Accueil » Publications » Le Bulletin Vert » Les Problèmes de l’APMEP » Enoncé des problèmes n° 314 et 315
  APMEP   Enoncé des problèmes n° 314 et 315

Article du bulletin 463

Adhérer ou faire un don

et solutions du problème n° 304

Énoncés des nouveaux problèmes

Énoncé du Problème n° 314 (Pierre JULLIEN, 13-Meyreuil)
On considère trois cercles de même rayon R, ayant un point commun. Démontrer que le cercle circonscrit au triangle formé par les autres points d’intersection des cercles deux à deux a pour rayon R.

voir l’article où est publiée une solution

Énoncé du Problème n° 315 (J.-C. Carréga, 69-Lyon) _Dans le plan euclidien, soient A, B, C, D quatre points alignés dans cet ordre sur une droite ($\Delta$). Déterminer l’ensemble des points M du plan d’où l’on voit les segments [AB] et [CD] sous le même angle.

Solutions des problèmes antérieurs

Énoncé du Problème n° 304 (Pierre SAMUEL, 92-Bourg-la-Reine)
Dans le cas particulier où n − 2 est un nombre premier impair p, montrer que l’équation diophantienne $2x^2 + 1 = y^n$ (n > 2) n’admet, hormis la solution triviale x = 0, y = 1, que la solution n = 5, x = 11 et y = 3.

Solution

(Article mis en ligne par Armelle BOURGAIN)
 Accueil   Plan du site   Haut de la page   Page précédente