Accueil » Publications » Le Bulletin Vert » Les dossiers » Équation différentielle y ′ = y et (...)
  APMEP   Équation différentielle y ′ = y et fonction exponentielle

Article du bulletin 460

Adhérer ou faire un don

Michel Fréchet

Résumé

Suite au conseil du programme de terminale S qui recommande d’introduire la fonction exponentielle avant le fonction logarithme, l’auteur montre qu’on peut "presque" construire cette fonction en utilisant les notions du programme de cette classe. Partant de l’équation différentielle f’=f, il considère une famille de fonctions polynômes, puis un polynôme "infini", égal à sa dérivée, et admettant que les propriétés valables pour les suites finies sont valables pour les suites infinies rencontrées ici, il donne la représentation graphique et les propriétés de la fonction obtenue qui aboutit à la notation courante. En conclusion un commentaire sur la dérivée de fonctions composées.

Plan de l’article

  • 1. Introduction
  • 2. Recherche de fonctions égales à leur dérivée
    • 1. Famille de fonctions
    • 2. Dérivée des fonctions $ u_n$
  • 3. Étude de suites
  • 4. Construction de la représentation de la fonction exp par approximation sur $ \mathbb R^+ $
  • 5. Dérivée de exp
  • 6. Prolongement sur $ \mathbb R^{-*}$
  • 7. Propriétés de la fonction exp
  • 8. Étude de la fonction exponentielle
  • 9. Commentaires

Télécharger l’article en pdf dans son intégralité

(Article mis en ligne par Catherine Ranson)
 Accueil   Plan du site   Haut de la page   Page précédente