

EXERCICE 1
Commun à tous les candidats

5 points

Aucun détail des calculs statistiques effectués à la calculatrice n'est demandé dans cet exercice. Dans un magasin, le nombre annuel de ventes d'un appareil électroménager, relevé pendant 6 années, est donné par le tableau suivant :

Année	1996	1997	1998	1999	2000	2001
Rang de l'année x_i	1	2	3	4	5	6
Nombre d'appareils y_i	623	712	785	860	964	1 073

- **1. a.** Représenter dans un repère orthogonal le nuage de points $M(x_i, y_i)$ en prenant comme unités graphiques : 2 cm pour 1 rang en abscisses et 1 cm pour 50 appareils en ordonnées, en commençant à la graduation 600.
 - **b.** Calculer, en donnant les résultats arrondis à 10⁻², les coordonnées du point moyen G du nuage et placer ce point sur le graphique.
- **2. a.** Calculer, en donnant les résultats arrondis à 10^{-2} , les coordonnées du point moyen G_1 du nuage formé par les points M_1 , M_2 et M_3 , puis les coordonnées du point moyen G_2 du nuage formé par les points M_4 , M_5 et M_6 .
 - **b.** Placer les points G_1 et G_2 sur le graphique et déterminer, avec des coefficients arrondis à 10^2 , une équation de la droite (G_1G_2) .
 - **c.** En utilisant cette droite comme droite d'ajustement affine, déterminer le nombre d'appareils que l'on peut prévoir vendre en 2004.
- 3. On sait maintenant que le nombre d'appareils vendus en 2002 est de 1 125.
 - **a.** Ajouter le point $M_7(7; 1125)$ sur le graphique précédent.
 - **b.** On considère alors le nouveau nuage formé des points M_i , $2 \le i \le 7$ (le nombre annuel de ventes de l'année 1996 n'est plus pris en compte).
 - Donner, à l'aide de la calculatrice, une équation de la droite d'ajustement affine de y en x par la méthode des moindres carrés (les coefficients seront arrondis à 10^{-2}).
 - c. En utilisant cet ajustement, quel nombre d'appareils peut-on prévoir vendre en 2004?

EXERCICE 2 Candidats n'ayant pas suivi l'enseignement de spécialité

5 points

Une petite entreprise de textile commercialise des nappes et des lots de serviettes assorties. Quand un client se présente, il achète au plus une nappe et un lot de serviettes.

- 1. La probabilité pour qu'un client achète la nappe est 0,2. La probabilité pour qu'un client achète le lot de serviettes quand il a acheté la nappe est 0,7 et la probabilité qu'il achète le lot de serviettes quand il n'a pas acheté la nappe est 0,1.
 - **a.** On note N l'évènement « un client achète la nappe ». On note S l'évènement « un client achète le lot de serviettes ». Construire un arbre pondéré décrivant la situation.
 - **b.** Montrer que la probabilité de l'évènement $N \cap S$ est égale à 0,14.
 - c. Calculer la probabilité de l'évènement S.
 - d. Calculer la probabilité pour qu'un client achète au moins l'un des deux articles.
- **2.** La nappe est vendue 125 euro et le lot de serviettes $45 \in$.

a. Établir en reproduisant sur la copie le tableau suivant, la loi de probabilité : « dépense d'un client ».

Dépense (en euro)	0	45	125	170
Probabilité				

- **b.** Calculer l'espérance mathématique de cette loi. Donner l'interprétation concrète de ce nombre.
- **3.** On rappelle que la probabilité pour qu'un client achète l'ensemble nappe et serviettes est 0,14. On choisit trois clients au hasard. On suppose que le nombre de clients est suffisamment grand pour que ce choix soit assimilé à un tirage successif avec remise. Quelle est la probabilité qu'un seul client ait acheté un ensemble nappe et serviettes?

Exercice 2 5 points

Candidats ayant suivi l'enseignement de spécialité

Soit le graphe G joint en annexe constitué des sommets A, B, C, D, E, F et G.

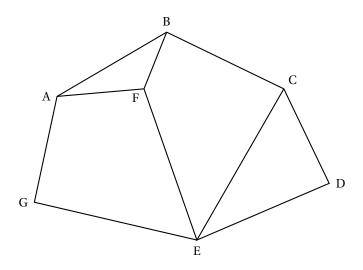
- 1. Quel est son ordre et le degré de chacun de ses sommets?
- 2. Reproduire sur la copie et compléter le tableau des distances entre deux sommets de G:

Distance	A	В	С	D	Е	F	G
A	×						
В	×	×					
С	×	×	×				
D	×	×	×	×			
Е	×	×	×	×	×		
F	×	×	×	×	×	×	
G	×	×	×	×	×	×	×

En déduire le diamètre de ce graphe.

- **3. a.** Donner un sous-graphe complet d'ordre 3 de G. Qu'en déduire pour le nombre chromatique de G?
 - **b.** Proposer une coloration du graphe G et en déduire son nombre chromatique.
- **4.** Donner la matrice M associée à G (vous numéroterez les lignes et les colonnes dans l'ordre alphabétique).
- **5.** En utilisant la matrice M_2 donnée en annexe 1, déduire le nombre de chaînes de longueur 2 partant de A sans y revenir.

Annexe 1: exercice 2



$$\mathbf{M}^2 = \begin{pmatrix} 3 & 1 & 1 & 0 & 2 & 1 & 0 \\ 1 & 3 & 0 & 1 & 2 & 1 & 1 \\ 1 & 0 & 3 & 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 2 & 1 & 1 & 1 \\ 2 & 2 & 1 & 1 & 4 & 0 & 0 \\ 1 & 1 & 2 & 1 & 0 & 3 & 2 \\ 0 & 1 & 1 & 1 & 0 & 2 & 2 \end{pmatrix}$$

PROBLÈME 10 points

Commun à tous les candidats

Partie A

On considère la fonction f définie sur]-1; $+\infty[$ par :

$$f(x) = ax + b + 3\ln(x+1)$$

où a et b désignent deux réels que l'on déterminera dans la question $\mathbf{2}$. On appelle \mathscr{C}_f sa courbe représentative. La figure de l'annexe représente une partie de cette courbe donnée par une calculatrice graphique.

 \mathscr{C}_f vérifie les conditions suivantes :

elle passe par le point A(0; 5) et elle admet une tangente horizontale au point d'abscisse $\frac{1}{2}$.

- 1. En utilisant les données de l'énoncé, que peut-on dire du sens de variation de *f* ?
- **2.** Déterminer a et b.

Partie B

On suppose désormais que la fonction f est définie sur] – 1; $+\infty$ [par :

$$f(x) = -2x + 5 + 3\ln(x+1)$$
.

1. a. Calculer la limite de f en -1. Interpréter graphiquement le résultat.

- **b.** En admettant que : $\lim_{x \to +\infty} \frac{\ln(x+1)}{x} = 0$, calculer $\lim_{x \to +\infty} f(x)$.
- **2.** Calculer f'(x) et étudier les variations de f Dresser le tableau de variations. Préciser la valeur exacte du maximum de f.
- **3.** Tracer \mathscr{C}_f et les asymptotes éventuelles dans un plan muni d'un repère orthonormal $\left(0, \overrightarrow{i}, \overrightarrow{j}\right)$. (unité graphique : 2 cm)
- **4. a.** Montrer qu'il existe deux réels α et β tels que $\alpha < 0 < \beta$ et $f(\alpha) = f(\beta) = 0$.
 - **b.** Donner une valeur approchée à 10^{-2} près par défaut de α et de β .
 - **c.** En déduire le signe de f(x) sur] 1 ; $+\infty$ [.
- **5.** Soit *g* la fonction définie sur]-1; $+\infty[$ par :

$$g(x) = (x+1)\ln(x+1) - x$$
.

- **a.** Calculer g'(x).
- **b.** En déduire l'expression de la primitive de f s'annulant pour x = 0.

Partie C

Une imprimerie a une capacité de production de 5 000 ouvrages par jour. Une étude a montré que le coût marginal peut être modélisé par f(q) (en milliers d'euro) où q désigne la quantité d'ouvrages imprimés (en milliers).

On rappelle que le coût marginal correspond à la dérivée du coût total.

- 1. a. Calculer $\int_0^5 f(q) dq$.
 - b. En déduire le coût total en euro de fabrication de 5 000 ouvrages.
- **2.** L'imprimeur compte réaliser en deux jours une commande de 8 000 ouvrages. Il hésite entre deux possibilités :

5 000 ouvrages le premier jour puis 3 000 le second,

4000 ouvrages pendant deux jours.

Quelle est l'option la plus rentable?

juin 2003

