☞ Baccalauréat C Étranger Groupe I bis juin 1981 ∾

EXERCICE 1

On se propose de résoudre dans \mathbb{Z}^2 l'équation

(E)
$$17x - 15y = 3$$
.

- **1.** Démontrer que, pour tout couple (*x* ; *y*) solution de (E), *x* est multiple de 3.
- 2. Déterminer une solution particulière de l'équation (E) puis la résoudre complètement.
- **3.** Démontrer que si (*x* ; *y*) est un couple solution, le plus grand commun diviseur de x et y est égal à l'un ou l'autre de deux entiers que l'on précisera. Déterminer tous les couples (*x* ; *y*) solutions de (E) tels que *x* et *y* ne soient pas premiers entre eux.

EXERCICE 2

Soit \mathscr{P} un plan affine euclidien, rapporté à un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$. Au point de \mathscr{P} , de coordonnées (x; y) on associe son affixe x+iy. On désigne par A le point d'affixe 1.

- 1. Déterminer, par leurs affixes b et c, deux points B et C de \mathscr{P} vérifiant les deux conditions :
 - a. O est barycentre de A, B, C affectés de coefficients égaux;
 - **b.** $\|\overrightarrow{AB}\| = \|\overrightarrow{AC}\| = 2 \|\overrightarrow{BC}\|.$
- **2.** Sans refaire les calculs, indiquer par quelle transformation géométrique on passe des résultats obtenus à partir du point A, d'affixe 1, à ceux qu'on obtient à partir du point A', d'affixe *a* complexe quelconque.

PROBLÈME

1. **a.** Étudier et représenter graphiquement (par une courbe C) la fonction G de $\mathbb R$ dans $\mathbb R$ définie par

$$G(x) = \text{Log} \, \text{Log} |x|$$
.

Log désignant le logarithme népérien.

- **b.** Montrer que la restriction g de G à l'intervalle I =]1; $+\infty[$ admet une application réciproque que l'on notera h. Expliciter l'image par h d'un réel x.
- **2.** À tout réel k, on associe l'ensemble E_k des applications f de I dans \mathbb{R} qui vérifient la condition :

$$\forall x \in I$$
, $f(x^2) = f(x) + k$.

- **a.** Montrer que E_0 est un espace vectoriel réel.
- **b.** Montrer que, pour tout $k \in \mathbb{R}$, l'application $g_k = \frac{k}{\log 2}g$ est un élément de E_k .
- **c.** Montrer que, pour k donné dans \mathbb{R} , E_k est l'ensemble des applications de la forme $g_k + \varphi$, avec $\varphi \in E_0$. De quelle structure peut-on munir l'ensemble E_k ?
- **3. a.** À toute application φ de I dans \mathbb{R} , on associe l'application $\psi = \varphi \circ h$ de \mathbb{R} dans \mathbb{R} (h a été définie en 1. b).

Montrer que φ appartient à E_0 si, et seulement si, ψ admet Log 2 pour période.

On note P l'ensemble des applications de $\mathbb R$ dans $\mathbb R$, de période Log 2.

Le baccalauréat de 1981 A. P. M. E. P.

b. Montrer que E_k est l'ensemble des applications de I dans $\mathbb R$ de la forme

$$\frac{k}{\text{Log}}g + \psi \circ g$$
, avec $\psi \in P$.

- **4.** On note θ l'application $t \mapsto \sin\left(\frac{2\pi}{\log 2}t\right)$, de \mathbb{R} dans \mathbb{R} ; on note u l'application $\theta \circ g$ de I dans \mathbb{R} .
 - **a.** Étudier et représenter graphiquement (courbe Γ) la restriction de u à l'intervalle $J = [\sqrt{e}; e];$ on donnera des valeurs approchées à 10^{-2} près des réels $x \in J$ tels que u(x) appartienne à $\{-1; 0; 1\}.$
 - **b.** Vérifier que u est un élément de E_0 . Représenter graphiquement (courbe Γ') la restriction de u à l'intervalle

$$J' = \left[e^{\frac{1}{4}} ; e^{\frac{1}{2}} \right].$$

(Unité: 4 cm.)