ullet Baccalauréat Série mathématiques Kaboul novembre 1956 1 \sim

Algèbre et trigonométrie

I

1er sujet

Résoudre l'équation:

$$tg x + tg 2x = tg 3x$$
.

2e sujet

Résoudre l'équation:

$$\sin 3x - \sin x = \sin 2x.$$

3e sujet

Résoudre l'équation:

$$\cos 2x - \cos 6x = \sin 3x + \sin 5x$$

II

On considère la fonction :

$$y = \frac{x^3 - 10x^2}{1 - x}.$$

- 1. Étudier les variations de y et tracer la courbe représentative \mathscr{C} . \mathscr{C} coupe l'axe des x en deux points, dont l'un, A, a une abscisse positive; calculer la pente de la tangente en A.
- **2.** Une droite variable L, de pente m, pivote autour de A. Discuter, suivant les valeurs de m, le nombre des points d'intersection de \mathscr{C} et L.
- **3.** Lorsque \mathscr{C} et L ont deux points communs, M et M', calculer en fonction de m les coordonnées X et Y du milieu I de MM' et trouver le lieu de I. Tracer cette courbe (P) sur la figure. Points communs à \mathscr{C} et (P).

Géométrie

I. - 1er sujet

En considérant l'ellipse comme la projection orthogonale d'un cercle, traiter le problème de l'intersection d'une droite et d'une ellipse.

I. - 2^e sujet

Par la même méthode, traiter le problème des tangentes à l'ellipse menées par un point donné.

I. - 3e sujet.

Montrer que l'ellipse (et l'hyperbole) est le lieu géométrique des points du plan dont le rapport des distances à un foyer et à une directrice associée est égal à $\frac{c}{a}$.

Étudier soigneusement les différents cas.

II.

^{1.} Le programme et les épreuves de ce baccalauréat ne sont pas exactement les mêmes que ceux du baccalauréat français

Le baccalauréat de 1956 A. P. M. E. P.

1. Soit une parabole P de foyer F, d'axe Ox, de sommet O et de tangente au sommet Oy. On prend un point quelconque I sur Oy.

Construire la tangente T à la parabole (distincte de Oy) qui passe par I.

Déterminer le point de contact M.

- **2.** Une parabole est définie par sa directrice D, une tangente T et le point de contact M. Construire géométriquement le foyer F de cette parabole.
- **3.** On considère alors la parabole P' ayant pour directrice T et tangente en F à Ox. Trouver le lieu de son foyer G lorsque la tangente T à la parabole P varie.
- **4.** Montrer que l'axe Gz de cette parabole P' passe par un point fixe K. Lieu du sommet de la parabole P'.