∽ Baccalauréat C Maroc juin 1981 ∾

EXERCICE 1

Résoudre dans $\mathbb{N} \times \mathbb{N}$

$$x^2 - 9v^2 = -35$$
.

EXERCICE 2

Soit $\mathbb C$ l'ensemble des nombres complexes et soit f l'application de $\mathbb C$ dans $\mathbb C$ définie par

$$f(z) = z^3 + (5i - 1)z^2 + (-1 + 4i)z + 3 + 7i.$$

- **1.** Calculer f(i). En déduire une factorisation de f(z).
- **2.** Résoudre dans \mathbb{C} l'équation f(z) = 0.

PROBLÈME

Soit \mathbb{R} le corps des nombres réels, \mathbb{R}_+^* le sous-ensemble des réels strictement positifs. Soit f et g les fonctions numériques définies sur \mathbb{R}_+^* par

$$f(t) = \frac{1}{t}\cos 2t \quad \text{et} \quad g(t) = -\sin 2t.$$

Partie A

Soit E l'espace vectoriel sur \mathbb{R} des combinaisons linéaires à coefficients réels de f et g, muni des lois d'addition des fonctions et de multiplication d'une fonction par un réel.

- 1. Vérifier que (f, g) est une base de E.
- **2.** Soit φ l'application de E \times E dans $\mathbb R$ définie par

$$\varphi(u, v) = \int_{\frac{\pi}{2}}^{\pi} t^2 u(t) \cdot v(t) dt.$$

- **a.** Montrer que φ est un produit scalaire sur l'espace vectoriel E.
- **b.** Montrer que la base (f, g) est orthogonale pour le produit scalaire cp.
- **c.** Montrer qu'il existe un produit scalaire sur l'espace vectoriel E pour lequel la base (f, g) est orthonormée.

Partie B

Soit \mathscr{P} un plan affine euclidien orienté rapporté à un repère orthonormé direct $(O; \overrightarrow{\iota}, \overrightarrow{\jmath})$. Soit $t \in \mathbb{R}_+^*$ et A_t l'application affine de \mathscr{P} dans \mathscr{P} qui au point M de coordonnées (x; y) associe le point M' de coordonnées (x'; y') avec

$$\begin{cases} x' = f(t).x - g(t).y \\ y' = g(t).x + f(t).y. \end{cases}$$

- 1. Montrer que A_t est une similitude plane directe et en préciser ses éléments caractéristiques (centre, rapport, mesure de l'angle).
- **2.** a. Déterminer l'ensemble des réels $t \in \mathbb{R}_+^*$ tels que A_t soit une rotation.

Le baccalauréat de 1981 A. P. M. E. P.

- **b.** Déterminer l'ensemble des réels $t \in \mathbb{R}_+^*$ tels que A_t soit une homothétie.
- **3.** Existe-t-il $t \in \mathbb{R}_+^*$ tel que $A_{\frac{\pi}{8}} \circ A_t = A_1$? (La loi \circ étant la composition des applications.)

Partie C

1. Soit h la fonction numérique définie sur l'intervalle réel I =]0; $\pi]$ par

$$h(t) = \cos 2t + 2t \sin 2t$$
.

- **a.** Étudier les variations de h sur I.
- **b.** Montrer que l'équation h(t) = 0 admet sur I exactement deux solutions, notées t_0 et t_0' , $(t_0 < t_0')$; vérifier que 1t 1t -

$$\frac{\pi}{4} < t_0 < \frac{\pi}{2}$$
 et $\frac{3\pi}{4} < t'_0 < \pi$.

(On ne cherchera pas à calculer numériquement t_0 et t_0' mais on justifiera rigoureusement leur existence).

- **c.** En déduire l'étude du signe de h(t) lorsque t appartient à I.
- **2. a.** Étudier la fonction f sur I (sens de variation, extremums, limites).
 - **b.** Vérifier que pour tout $t \in \mathbb{R}_+^*$ on a

$$-\frac{1}{t} \leqslant f(t) \leqslant \frac{1}{t}.$$

- **c.** Résoudre dans \mathbb{R}_{+}^{\star} l'équation f(t) = 0.
- **3.** Soit h_1 et h_2 les fonctions numériques définies sur \mathbb{R}_+^* par

$$h_1(t) = -\frac{1}{t}$$
 et $h_2(t) = \frac{1}{t}$.

On appelle C, C₁, C₂ les courbes représentatives des fonctions f, h_1 , h_2 dans un plan affine \mathscr{P} rapporté à un repère orthonormé $\left(0; \overrightarrow{i}, \overrightarrow{j}\right)$.

- **a.** Déterminer les points d'intersection de C et de C_1 et montrer qu'en ces points les deux courbes ont même tangente.
- **b.** Déterminer les points d'intersection de C et de C_2 et montrer qu'en ces points les deux courbes ont même tangente.
- **c.** Soit C', C'_1 et C'_2 les courbes représentatives des restrictions à I des fonctions f, h_1 et h_2 . Tracer dans un même repère orthonormé C', C'_1 et C'_2 .
- **d.** En déduire sans justification le tracé des courbes C, C₁, C₂.

Partie D

Dans un plan affine euclidien \mathscr{P} muni d'un repère orthonormé $\left(0; \overrightarrow{t}, \overrightarrow{j}\right)$, M est un point mobile dont les coordonnées à la date t ($t \in \mathbb{R}_+^*$) sont

$$\begin{cases} x = f(t) \\ y = g(t) \end{cases}$$

Le baccalauréat de 1981 A. P. M. E. P.

1. Déterminer les vecteurs \overrightarrow{V} , vitesse de M, et $\overrightarrow{\Gamma}$ accélération de M à la date t. Vérifier que le mouvement de M est retardé sur]0; $+\infty$ [.

- **2. a.** Vérifier que l'application $t \mapsto \|\overrightarrow{OM}\|$ est strictement décroissante sur]0; $+\infty[$. Déterminer l'angle $(\overrightarrow{i}, \overrightarrow{OM})$.
 - b. Calculer

$$\lim_{\substack{t \to 0 \\ t > 0}} f(t) \quad \text{et} \quad \lim_{\substack{t \to 0 \\ t > 0}} g(t)$$

puis

$$\lim_{t\to +\infty} f(t) \quad \text{et} \quad \lim_{t\to +\infty} g(t).$$

- **c.** Représenter approximativement dans \mathscr{P} les positions de M aux instants $\frac{\pi}{4}$, $\frac{\pi}{2}$, $\frac{3\pi}{4}$, π et 2π . (On prendra $\pi \approx 3$).
- **d.** En déduire l'allure de la trajectoire de M sur]0; $+\infty[$.