☞ Baccalauréat ES (obligatoire) Polynésie septembre 2003 ∾

EXERCICE 1 5 points
Commun à tous les candidats

Partie A

Le tableau suivant donne le taux de prélèvement obligatoire en France exprimé en points de PIB (produit intérieur brut).

Année	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
Rang de l'année x_i	0	1	2	3	4	5	6	7	8	9
Taux t_i	42,7	42,9	43,4	43,7	44,8	44,9	44,9	45,7	44,7	44,2

Source: budget

Le nuage de points associe à la série $(x_i; t_i)$ présentant des écarts à peu près réguliers de part et d'autre de la droite d'ajustement, on effectue un lissage par la méthode des moyennes mobiles d'ordre 3 en remplaçant le taux t_i par la moyenne $z_i = \frac{t_{i-1} + t_i + t_{i+1}}{3}$. Par exemple : $z_1 = \frac{z_0 + z_1 + z_2}{3} = 43$.

1. Compléter après l'avoir reproduit le tableau suivant (les valeurs seront arrondies à 0,1) et compléter le nuage de points sur la figure donnée en annexe.

Rang de l'année x_i	1	2	3	4	5	6	7	8
Moyenne z_i	43	43,3		44,5			45,1	44,9

2. Écrire une équation de la droite d'ajustement affine D de z en x par la méthode des moindres carrés (les coefficients seront arrondis à 0,01). Tracer D sur la figure fournie en annexe.

Partie B

L'allure du nuage permet d'envisager un autre ajustement correspondant à la parabole \mathcal{P} d'équation

$$y = -0.065x^2 + 0.91x + 42.$$

1. Tracer la parabole \mathscr{P} sur la figure fournie en annexe en utilisant le tableau suivant. On prendra 45,2 comme valeur approchée de l'ordonnée du sommet de \mathscr{P} .

x_i	1	2	3	4	5	6	7	8
y_i	42,8	43,6	44,1	44,6	44,9	45,1	45,2	45,1

- **2.** On se propose d'étudier pour lequel des deux modèles on obtient le meilleur ajustement. Pour cela, on calcule les sommes des carrés des écarts entre les valeurs z_i et les valeurs données par le modèle. On appelle $S_{\mathscr{P}}$ et S_D les sommes associées respectivement à la parabole \mathscr{P} et à la droite D.
 - a. Compléter après l'avoir reproduit le tableau suivant. Les valeurs sont données à 0,01 près.

x_i	1	2	3	4	5	6	7	8
$(z_i - y_i)^2$	0,04	0,09		0,01			0,01	0,04

- **b.** Calculer $S_{\mathscr{P}} = \sum_{i=1}^{8} (z_i y_i)^2$.
- **c.** Pour le modèle correspondant à la droite D on donne S_D = 0,8. Quel est le modèle qui donne le meilleur ajustement?
- **3.** En utilisant le modèle associé à la parabole ${\mathcal P}$:
 - **a.** Calculer y_9 (valeur arrondie à 10^{-2}).

Baccalauréat S A. P. M. E. P.

b. Cette valeur étant une estimation de la moyenne mobile z_9 , en déduire une estimation t_{10} du taux de prélèvement obligatoire en 2002.

EXERCICE 2 5 points

Pour les candidats n'ayant pas suivi l'enseignement de spécialité

La D.G. XXIV de la Commission Européenne, dans son rapport du 8 juillet 1999, détaille ainsi l'évaluation du test W pour le diagnostic de l'ESB (Encéphalopathie Spongiforme Bovine) :

- la proportion des réactions POSITIVES au test effectué sur des tissus nerveux provenant d'animaux infectés est égale à 70%;
- la proportion des réactions NÉGATIVES au test effectué sur des tissus nerveux provenant d'animaux non infectés est égale à 90 %.

On envisage un dépistage dans un cheptel bovin. On choisit dans le cheptel un animal au hasard.

On désigne par M l'évènement « l'animal est malade » et par T l'évènement « le test est positif ».

Partie A

On estime à 0,07 la fréquence d'animaux malades dans le cheptel.

- 1. Construire un arbre pondéré représentant cette situation et donner les valeurs manquantes.
- **2.** En utilisant cet arbre, calculer $P(M \cap T)$ puis P(T).
- **3.** En déduire la probabilité que l'animal soit malade sachant que le test est positif. On donnera la valeur arrondie à 10^{-3} .

Partie B

On estime maintenant à x la fréquence d'animaux malades dans le cheptel.

- 1. Construire un arbre pondéré représentant cette situation.
- **2.** En utilisant cet arbre, calculer $P(M \cap T)$ puis P(T).
- **3.** On note $P_T(M)$ la probabilité que l'animal soit malade sachant que le test est positif. Montrer que $P_T(M) = \frac{7x}{6x+1}$.
- **4.** Soit f la fonction numérique de la variable x définie sur [0;1] par 7x

$$f(x) = \frac{7x}{6x+1}.$$

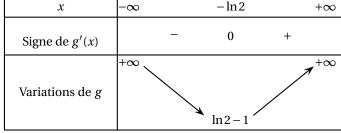
Résoudre sur [0; 1] l'inéquation $f(x) \ge 0,9$. Interpréter le résultat.

PROBLÈME 10 points Commun à tous les candidats

Partie A

Le tableau de variations donné ci-dessous est celui de la fonction g définie sur \mathbb{R} par :

$$g(x) = 2e^x - x - 2.$$



Baccalauréat S A. P. M. E. P.

- **1. a.** Calculer g(0).
 - **b.** Montrer que l'équation g(x) = 0 admet une autre solution α appartenant à l'intervalle [-2; -1].

Dans la suite, on prendra -1,6 comme valeur arrondie de α .

2. Déterminer le signe de g sur \mathbb{R} .

Partie B

Soit f la fonction définie sur \mathbb{R} par

$$f(x) = e^{2x} - xe^x - e^x$$
.

- **1. a.** Déterminer la limite de f en $-\infty$.
 - **b.** Déterminer la limite de f en $+\infty$ (on pourra mettre e^{2x} en facteur dans l'expression f(x)).
- **2.** a. Calculer f'(x) et montrer que f' et g ont le même signe.
 - **b.** En déduire le sens de variations de f.
 - **c.** Dresser le tableau de variations de f.
- **3.** Tracer la courbe représentative \mathscr{C} de f dans un repère orthogonal (unités graphiques : 5 cm sur l'axe des abscisses et 3 cm sur l'axe des ordonnées).

Partie C

1. Soit H la fonction définie sur \mathbb{R} par

$$H(x) = e^x(x-1).$$

Montrer que H est une primitive sur \mathbb{R} de la fonction h définie par $h(x) = xe^x$.

- **2.** En déduire une primitive sur \mathbb{R} de la fonction f.
- **3.** Calculer l'aire du domaine limité par la courbe \mathscr{C} , l'axe des abscisses et les droites d'équations x = 0 et x = 1. On donnera la valeur exacte en unités d'aire, puis la valeur arrondie à 10^{-2} en cm².

Partie D

Dans une entreprise, le coût de fabrication, en centaines d'euros, de x dizaines d'objets est modélisé par la fonction C définie sur $[0; +\infty[$ par C(x) = f(x).

- 1. Calculer le coût de fabrication de 10 objets au centime d'euro près.
- **2. a.** Résoudre graphiquement l'équation C(x) = 6. Donner une valeur approchée à 10^{-1} près par défaut du résultat.
 - **b.** En déduire le nombre maximal d'objets qu'on peut fabriquer pour un coût de 600 €?

Baccalauréat S A. P. M. E. P.

Annexe à rendre avec la copie

Exercice 1

