∽ Baccalauréat C Pondichéry mai 1981 ∾

EXERCICE 1

k étant un entier naturel quelconque, soit x et y les deux entiers tels que

$$x = 7k^2 + 3k + 1$$

 $y = 8k + 3$.

1. Vérifier que (x; y) est solution de l'équation

$$64x - (56k + 3)y = 55.$$

- **2.** Quelles sont les valeurs possibles du P.G.C.D., *d*, de *x* et *y*?
- **3.** Montrer que d est égal à 55 si, et seulement si, 55 divise y. En déduire les valeurs de k pour lesquelles d = 55.

EXERCICE 2

La suite numérique $(n \mapsto u_n)$ est définie sur \mathbb{N} par la donnée de $u_0 = 0$ et par la relation de récurrence

$$\forall n \in \mathbb{N}, \qquad u_{n+1} = \frac{2u_n + 3}{u_n + 4}.$$

1. Calculer u_1 et u_2 .

Montrer que $\forall n \in \mathbb{N}^*$, $0 < u_n < 1$ et que la suite est croissante.

2. On considère la suite $(n \mapsto V_n)$ définie par son terme général

$$\forall n \in \mathbb{N}, \qquad \mathcal{V}_n = \frac{u_n - 1}{u_n + 3}$$

Montrer que la suite $(n \longrightarrow V_n)$ est une suite géométrique convergente.

Calculer u_n en fonction de n.

En déduire que u_n converge et calculer sa limite.

PROBLÈME

Partie A

E est un espace vectoriel euclidien orienté, de base orthonormée directe $(\overrightarrow{\iota} \ \overrightarrow{J})$, a est un nombre réel arbitraire et g_a désigne l'endomorphisme de E dont la matrice dans la base $(\overrightarrow{\iota} \ \overrightarrow{J})$ est

$$\begin{pmatrix} a & 2a \\ a+1 & -a \end{pmatrix}$$

- 1. a. Préciser les valeurs de a pour lesquelles g_a n'est pas bijective.
 - **b.** Quel est alors l'endomorphisme composé $g_a \circ g_a$? En déduire que l'espace image $\text{Im}(g_a)$ est inclus dans le noyau $\text{Ker}(g_a)$. Montrer que ces sous-espaces sont confondus.

Préciser ce sous-espace pour chacune des valeurs de *a* trouvées au 1. a.

Le baccalauréat de 1981 A. P. M. E. P.

- **c.** Montrer que g_0 est la composée $g_0 = r \circ p$ d'une projection vectorielle orthogonale que l'on précisera et de la rotation vectorielle r dont l'angle a pour mesure $+\frac{\pi}{2}$.
- **2. a.** Montrer que g_1 est la composée d'une homothétie vectorielle h, de rapport positif, et d'une symétrie vectorielle orthogonale s que l'on précisera.
 - **b.** Montrer que g_1 est le seul automorphisme de E de la forme g_a qui transforme toute base orthonormée en une base orthogonale.

Existe-t-il une isométrie vectorielle de la forme g_a ?

- **3. a.** Montrer que g^{-1} est involutive. Est-ce une symétrie vectorielle orthogonale?
 - **b.** Pour quelles valeurs de a, g_a est-elle involutive? Préciser les directions caractéristiques de chacune de ces involutions.

Partie B

La fonction numérique f est définie par

$$f(x) = \text{Log}\left(e^{-x} - e\right)$$

où Log désigne le logarithme népérien.

- 1. Préciser l'ensemble de définition \mathcal{D} de f et les limites aux bornes.
- **2.** Étudier les variations de f.
- **3.** Soit (C) la courbe représentative de f dans un plan affine P rapporté à un repère orthonormé $\left(0; \overrightarrow{i}, \overrightarrow{j}\right)$, l'unité de longueur étant 2 cm.

Étudier les branches infinies de (C). Montrer que la droite d'équation y = -x est asymptote à la courbe (C).

Calculer l'abscisse du point A d'intersection de (C) avec l'axe des abscisses et donner une équation de la tangente (T) à (C) en A.

Tracer la courbe (C).

Partie C

On appelle φ l'application affine de P laissant l'origine O invariante et admettant g^{-1} comme application linéaire associée.

- 1. Calculer les coordonnées (x', y') du point N' image par φ du point N(x; y). Quelle est la nature géométrique de φ ?
- **2.** On appelle (T) l'image de (C) par φ .

Montrer que M(x; y) appartient à (T) si, et seulement si,

(1)
$$e^y = e^{x+2y} - e$$
.

3. Trouver la fonction numérique h_1 telle qu'une équation de (T) soit

$$(2) y = h_1(x)$$

4. Trouver la fonction numérique h_2 telle qu'une équation de (T) soit

(3)
$$y = h_2(x)$$

Quel est l'ensemble de définition de h_2 ?

Étudier les limites

Le baccalauréat de 1981 A. P. M. E. P.

$$\ell_1 = \lim_{y \to +\infty} \left[h_2(y) + y \right]$$

$$\ell_2 = \lim_{y \to -\infty} \left[h_2(y) + 2y \right]$$

En déduire que (T) admet deux asymptotes obliques dont on donnera des équations.

5. Construire la courbe (T) en utilisant les résultats obtenus en C 1. et C 4.