∽ Baccalauréat C Reims juin 1981 ∾

EXERCICE 1

Soit \mathcal{V} un espace vectoriel euclidien rapporté à la base orthonormale $\mathscr{B} = (\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ et soit \mathscr{E} un espace affine euclidien, associé à \mathcal{V} , et rapporté au repère orthonormé $(0; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. Soit f l'application de \mathscr{E} dans \mathscr{E} qui à tout point M(x; y; z) associe le point M'(x'; y'; z') tel que

$$\begin{cases} x = -\frac{\sqrt{2}}{2}y + \frac{\sqrt{2}}{2}z \\ y' = \frac{\sqrt{2}}{2}x + \frac{y}{2} + \frac{z}{2} + 1 \\ z' = -\frac{\sqrt{2}}{2}x + \frac{y}{2} + \frac{z}{2} + 1. \end{cases}$$

- 1. Montrer que f est un vissage. Préciser son axe.
- **2.** Soit φ l'endomorphisme associé à f. Calculer $(\varphi \circ \varphi)$ (\overrightarrow{i}) . Quel renseignement, relatif à l'angle de f, peut-on en déduire?
- **3.** Soit P le plan affine d'équation y + z 2 = 0. Déterminer f(P).

EXERCICE 2

1. Résoudre dans $\mathbb{Z} \times \mathbb{Z}$ l'équation

$$6x - 13y = 5$$
.

2. En déduire la solution générale, dans Z, du système de congruences

$$\left\{ \begin{array}{ll} x & \equiv & 2 \mod 166 \\ x & \equiv & 7 \mod 13. \end{array} \right.$$

3. Donner la solution générale, dans ℤ, du système de congruence

$$\begin{cases} x \equiv 2 \mod 0 6 \\ x \equiv 7 \mod 0 13. \\ x \equiv 1 \mod 0 7. \end{cases}$$

PROBLÈME

On désigne par $\mathscr C$ l'espace vectoriel sur $\mathbb R$ des fonctions numériques de la variable réelle définies et continues sur $\mathbb R$.

À tout élément f de $\mathscr C$ on associe la fonction $\tilde f$ telle que

$$\tilde{f}(x) = \frac{1}{2} \int_{x-1}^{x+1} f(t) \, \mathrm{d}t,$$

pour tout réel x.

Le baccalauréat de 1981 A. P. M. E. P.

1. Montrer que, pour toute primitive F de f sur \mathbb{R} , on a

$$\tilde{f}(x) = \frac{1}{2}(F(x+1) - F(x-1)).$$

2. Calculer \tilde{f} lorsque f est la fonction définie par $f(t) = t^n$ $(n \in \mathbb{N}^*)$.

Montrer que pour toute fonction polynôme f sur \mathbb{R} est une fonction polynôme de même degré.

3. Calculer \tilde{f} lorsque f est la fonction définie par f(t) = |I| (pour le calcul de $\tilde{f}(x)$, on étudiera séparément les cas $x \le -1$, -1 < x < 1, $x \ge 1$).

Tracer dans un plan euclidien muni d'un repère orthonormé les courbes représentatives de f et de \tilde{f} lorsque f(t) = |t|.

Partie B

1. Montrer que, pour toute $f \in \mathcal{E}$, la fonction \tilde{f} est continue et dérivable sur \mathbb{R} , et que

$$(\tilde{f})'(x) = \frac{1}{2}[(x+1) - f(x-1)],$$

pour tout $x \in \mathbb{R}$.

2. En déduire que \tilde{f} est une fonction croissante si, et seulement si, f est une fonction périodique admettant le nombre réel 2 pour période.

Partie C

1. On suppose f croissance sur \mathbb{R} . Montrer qu'il en est de même de \tilde{f} . Montrer que, pour tout réel x, on a

$$f(x-1) \leqslant \tilde{f}(x) \leqslant f(x+1)$$
.

En déduire que si $\lim_{t\to\infty} f = +\infty$, alors $\lim_{t\to\infty} \tilde{f} = +\infty$, et que si $\lim_{t\to\infty} f = 0$, alors $\lim_{t\to\infty} \tilde{f} = 0$

2. Soit f la fonction définie sur \mathbb{R} par

$$f(t) = \frac{4e^t}{t^2 + 4}.$$

où e désigne la base des logarithmes népériens.

Donner le tableau de variations de f. En déduire celui de \tilde{f} .