∽ Baccalauréat C septembre 1981 Toulouse ∾

EXERCICE 1

Soit $U = (u_n)_{n \in \mathbb{N}}$ la suite réelle définie par

$$\begin{cases} u_0 &= 0 \\ u_1 &= 1 \\ u_{n+1} &= 10u_n - 9u_{n-1} \quad \forall n \in \mathbb{N}^* \end{cases}$$

- **1.** Calculer u_2 , u_3 , u_4 ?
- **2.** Soit $V = (v_n)_{n \in \mathbb{N}}$ la suite définie par

$$\forall n \in \mathbb{N} : v_n = u_{n+1} - u_n.$$

Montrer que V est une suite géométrique.

Calculer v_n et u_n en fonction de n.

La suite *U* est-elle convergente?

3. Calculer, en fonction de n,

$$S_n = \sum_{i=0}^n u_i.$$

EXERCICE 2

Dans un plan affine euclidien P rapporté à un repère orthonormé $(O; \overrightarrow{\iota}, \overrightarrow{J})$ les coordonnées d'un point mobile M sont définies, en fonction du temps t, par

$$\forall t \in [1; +\infty[$$

$$\begin{cases} x = \frac{3}{2} \left(t + \frac{1}{t}\right) \\ y = 2 \left(t - \frac{1}{t}\right) \end{cases}$$

1. Montrer que la trajectoire du mobile est incluse dans une hyperbole H. (on pourra calculer t et $\frac{1}{t}$ en fonction de x et y et en déduire une équation cartésienne de H).

Préciser les sommets, les asymptotes, les foyers de l'hyperbole et la construire dans le plan P rapporté au repère orthonormé $\left(O;\overrightarrow{t},\overrightarrow{J}\right)$ (unité : 1 cm).

- **2.** Étudier, lorsque t décrit]1; $+\infty$ [, les variations de l'ordonnée du mobile M. Préciser la trajectoire T décrite par M et le sens du mouvement sur cette trajectoire.
- **3.** Calculer, à l'instant t, les coordonnées du vecteur vitesse $\overrightarrow{V(t)}$ et du vecteur accélération $\overrightarrow{\Gamma(t)}$ du mobile M.

Allure du mouvement de M sur sa trajectoire?

Terminale C A. P. M. E. P.

PROBLÈME

Partie A

Soit E un espace vectoriel euclidien de base orthonormée B = $(\vec{l}, \vec{j}, \vec{k})$. φ est l'endomorphisme de E défini par

$$\begin{cases} \varphi(\overrightarrow{i}) &= \frac{1}{3}(\overrightarrow{j} + \overrightarrow{k}), \\ \varphi(\overrightarrow{j}) &= \frac{1}{6}(-2\overrightarrow{i} + \overrightarrow{k}), \\ \varphi(\overrightarrow{k}) &= \frac{1}{6}(-2\overrightarrow{i} - \overrightarrow{j}) \end{cases}$$

 $\overrightarrow{\omega}$ est le vecteur $\overrightarrow{\omega} = \frac{1}{3} \left(-\overrightarrow{i} + 2\overrightarrow{j} - 2k \right)$.

1. Dans la base B, un vecteur \overrightarrow{u} de coordonnées (x; y; z) a pour image le vecteur $\varphi(\overrightarrow{u})$ de coordonnées (x'; y'; z').

Exprimer x', y' et z' en fonction de x, y et z.

Montrer que pour tout vecteur \overrightarrow{u} de E, $\varphi(\overrightarrow{u})$ est orthogonal à \overrightarrow{u} .

2. Déterminer le noyau de φ (noté Ker φ).

Vérifier que $(\overrightarrow{\omega})$ est une base de Ker φ .

Déterminer l'image de φ (notée Im φ).

Montrer que ces deux sous-espaces vectoriels sont supplémentaires dans E.

3. On pose

$$\begin{cases} \vec{I} = \frac{1}{3} \left(-2\vec{i} + \vec{j} + 2\vec{k} \right), \\ \vec{J} = \frac{1}{3} \left(2\vec{i} + 2\vec{j} + \vec{k} \right). \end{cases}$$

Démontrer que $(\overrightarrow{I}, \overrightarrow{J})$ est une base orthonormée de Im φ et que $(\overrightarrow{I}, \overrightarrow{J}, \overrightarrow{\omega})$ est une base orthonormée de E.

(Dans la suite du problème, on notera P l'espace Im φ , et on orientera P à l'aide de la base orthonormée directe $(\overrightarrow{I},\overrightarrow{J})$.)

4. On note φ_1 l'endomorphisme de P défini par

$$(\forall \overrightarrow{u} \in P), \quad \varphi_1(\overrightarrow{u}) = \varphi(\overrightarrow{u}).$$

Déterminer la matrice de φ_1 dans la base $(\overrightarrow{I},\overrightarrow{J})$.

5. Démontrer qu'il existe une projection vectorielle Q de E, telle que, pour tout vecteur \overrightarrow{u} de E, on ait :

$$\varphi(\overrightarrow{u}) = \varphi_1 \left[Q(\overrightarrow{u}) \right].$$

Partie B

Terminale C A. P. M. E. P.

Soit \mathscr{E} un espace affine euclidien associé à E, de repère orthonormé $R = (O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. On note R' le repère orthonormé $R' = (O; \overrightarrow{I}, \overrightarrow{J}, \overrightarrow{\omega})$. f est l'application affine de $\mathscr E$ dans $\mathscr E$, laissant le point O invariant, et d'endomorphisme associé φ . $\mathscr P$

est le plan affine de repère orthonormé direct $(O; \overrightarrow{I}, \overrightarrow{J})$.

- **1.** Déterminer $f(\mathcal{E})$, image de \mathcal{E} par f.
- **2.** Quel est l'ensemble \mathcal{D} des points M de \mathcal{E} , ayant le point O pour image. \mathscr{D}' étant une droite parallèle à \mathscr{D} , coupant \mathscr{P} en A, quelle est l'image de \mathscr{D}' par f.