Accueil » Publications » Le Bulletin Vert » Les Problèmes de l’APMEP » Les problèmes du BV 482
  APMEP   Les problèmes du BV 482

Article du bulletin 482

Adhérer ou faire un don

et solutions du 479-8

- 9 juin 2013 -

Énoncés des nouveaux problèmes

Problème 482-1 (question de Michel LAFOND)
Un quadrilatère convexe a des côtés de mesure 6, 7, 8 et 11 et une aire de mesure 60. Est-il inscriptible ?

Problème 482-2
Pour $n \in \mathbb N $ et $x, y, z \in \mathbb C$, simplifier

$$\sum_{k=1}^n {n \choose k} (x-kz)^{k-1} (y+kz)^{n-k}$$

voir l’article où est publiée une solution

Problème 482-3
Pour $n \in \mathbb N$, on note S(n) la somme des chiffres dans l’écriture de n en base 10.
Trouver les $k \in \mathbb N^*$ tels que la suite $\left( S(n) \over S(kn) \right)_{n \in \mathbb N^*} $ soit majorée.
Des réponses partielles sont bienvenues.

voir l’article où est publiée une solution

Problème 482-4
Dans le développement asymptotique

$$\sum_{k=1}^n k \ln(k) =_{ n \to \infty} {1 \over 2} n^2 \ln(n)-{1\over 4}n^2+ {1 \over 2} n \ln(n)+{1 \over 12}\ln(n)+O(1)$$

montrer que le terme d’erreur tend vers ${1 \over 12}- \zeta'(1)$ où $ \zeta$ est la fonction de Riemann.
Pour une motivation de cette question, on pourra lire le corrigé du problème 479-8 dans les lignes qui suivent.

Solutions des problèmes antérieurs

Solution du problème 479-8
Pour $n \in \mathbb N*, G_n$ est la moyenne géométrique des coefficients binomiaux pour $k \in [[0, n]]$, c’est-à-dire que $G_n=\sqrt[n+1]{\prod_{i=1}^n} {n \choose k}$.
Trouver $\lim_{n \to \infty} \sqrt[n]{G_n}$

PDF - 1.1 Mo
(A) Une première solution
PDF - 1.1 Mo
(B) Solution de Robert FERREOL
PDF - 1.1 Mo
(C) Solution de Thibaud RAHIER et Jean ROUSSEL
PDF - 1.7 Mo
(D) Autres réponses et compléments
(Article mis en ligne par Armelle BOURGAIN)
 Accueil   Plan du site   Haut de la page   Page précédente