Adhérer ou faire un don

Études de régularité et logiciel GEOSPACW

CRISTAUX ISSUS DU SYSTÈME CUBIQUE

Jean-Pierre Daubelcour & Anne-Marie Marmier

Résumé de l’article

Cet article est la suite de l’article paru sous le même titre dans un numéro précédent. Inspiré par les éléments de cristallographie trouvés dans la brochure APMEP "Pavés et bulles" publié en 1977. Il étudie ici le système cubique. Après des considérations minimales sur les isométries du tétraèdre et du cube, il rappelle le groupe des 48 isométries du cube, puis construit , à l’aide de GéospacW les 5 formes régulières les plus générales du système cubique. Un des intérêts mathématiques et pédagogiques consiste dans l’aller-retour interactif entre le logiciel et le raisonnement, articulation du raisonnement géométrique avec la représentation analytique et les contraintes de commande de la machine. La progression amène à construire successivement les dodécaèdres (pentagonal tétraèdrique, à faces quadrilatères puis triangulaires), le gyroèdre, le diploèdre et l’hexatétraèdre (à 24 faces), l’hexoctaèdre (48 faces), et en cas particulier, le dodécaèdre rhomboïdal (à faces losanges), et l’octaèdre régulier, dont les faces sont des triangles équilatéraux.

Plan de l’article

CONSTRUCTION DES CINQ FORMES RÉGULIÈRES LES PLUS GÉNÉRALES DU SYSTÈME CUBIQUE

  • I. Représentation du cube et des deux tétraèdres réguliers associés
  • II. Rappels sur le groupe G des 48 isométries du cube
    • 1. En considérant le repère associé au cube
    • 2. En considérant les deux tétraèdres inscrits dans le cube
  • III. Les cinq sous-groupes associés au système cubique
  • IV. Préparation à la construction de formes cristallines du système cubique
  • V. Construction des formes cristallines du système cubique.
  • VI. Cas particulier : le plan P est invariant par une rotation du sous groupe G+.
  • Bibliographie

Télécharger l’article en pdf dans son intégralité

(Article mis en ligne par Armelle BOURGAIN)