

Exercice 1 6 points

On rapporte le plan à un repère orthonormé $(0, \overrightarrow{t}, \overrightarrow{j})$.

1. Résoudre dans ℂ l'équation

$$z^2 - z\sqrt{3} + 1 = 0$$
.

Les solutions, notées z_1 et z_2 , seront données sous forme algébrique puis sous forme exponentielle.

- **2.** Montrer que les points M_1 et M_2 d'affixe respective z_1 et z_2 sont sur le cercle de centre O et de rayon 1. En déduire une construction de ces points.
- **3.** Calculer $\alpha = z_1 + z_2$, $\beta = z_1^2 + z_2^2$, $\gamma = z_1^3 + z_2^3$.

Exercice 2 14 points

Pour construire un tremplin de ski d'été en béton, une station de sport d'hiver fait appel à un ingénieur qui choisit de le profiler en utilisant la courbe représentative d'une fonction.

A. Soit f une fonction définie sur \mathbb{R} par

$$f(x) = ax^3 + bx^2 + cx + d.$$

Déterminer les réels a, b, c et d tels que

$$f(0) = 1$$
 $f(1) = 0$ $f'(0) = 0$ $f'(1) = 0$.

- **B.** On rapporte le plan à un repère orthonormé $(0, \vec{i}, \vec{j})$ [unité : 10 cm]
 - 1. Soit g la fonction numérique définie sur \mathbb{R} par

$$g(x) = 2x^3 - 3x^2 + 1$$

- **2.** Étudier les variations de g sur [0; 1,3] et dresser son tableau de variations.
- **3.** Déterminer une équation de la tangente à la courbe représentative \mathscr{C} de g au point d'abscisse x = 1,3.
- **4.** Tracer la partie de la courbe \mathscr{C} correspondant à l'intervalle [0; 1,3] ainsi que ses tangentes aux points d'abscisse x = 0, x = 1 et x = 1,3.

C. Hachurer la partie du plan délimitée par les axes, la droite d'équation x = 1,3 et la courbe \mathscr{C} .

- 1. Calculer son aire, exprimée en cm².
- **2.** Ce domaine hachuré représente la coupe à l'échelle 1/100 d'un tremplin de ski en béton de largeur 5 m. Calculer le volume de béton nécessaire à la conception de ce tremplin.