ℴ Brevet de technicien supérieur ℴ session 2003 - Informatique de gestion

Exercice 1 5 points

On considère l'expression E dépendant des variables booléennes a, b et c:

$$E = \overline{a}.\overline{c} + b.\overline{c} + a.\overline{b} + \overline{a}.\overline{b}.c$$

1. Simplifier l'expression \overline{E} à l'aide de la lecture d'un tableau de Karnaugh (ou d'une table de vérité) et en déduire que :

$$E = \overline{b} + \overline{c}$$

2. Dans un organisme qui aide des personnes au chômage à trouver un emploi, on considère pour ces personnes, trois variables booléennes définies ainsi :

a = 1 si la personne est âgée de 45 ans ou plus (sinon a = 0);

b = 1 si la personne est au chômage depuis un an ou plus (sinon b = 0);

c=1 si la personne a déjà suivi une formation l'année précédente (sinon c=0).

Une formation qualifiante sera mise en place pour les personnes vérifiant au moins un des critères suivants :

- avoir 45 ans ou plus et être au chômage depuis moins de un an;
- avoir moins de 45 ans et ne pas avoir suivi de formation l'année précédente;
- être au chômage depuis un an ou plus et ne pas avoir suivi de formation l'année précédente;
- avoir moins de 45 ans, être au chômage depuis moins de un an et avoir suivi une formation l'année précédente.

Les personnes qui ne répondent à aucun de ces quatre critères, pourront participer à un stage d'insertion en entreprise.

- **a.** Écrire l'expression booléenne *F* en fonction des variables *a*, *b* et *c* qui traduit le fait que la personne pourra suivre cette formation qualifiante.
- **b.** En déduire, en utilisant le résultat du 1., les personnes qui ne pourront pas participer à la formation qualifiante et qui participeront donc à un stage d'insertion en entreprise.

Exercice 2 6 points

On considère les matrices $A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ et $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

- **1.** Déterminer la matrice B = A I puis calculer les matrices B^2 et B^3 .
- **2.** En déduire la matrice B^n pour tout entier $n, n \ge 3$.
- **3.** La formule du binôme, appliquée au développement de $(B+I)^n$ permet d'écrire pour tout entier $n, n \ge 3$:

 $A^n = (I+B)^n = I + C_n^1 \cdot B + C_n^2 \cdot B^2 + C_n^3 \cdot B^3 + \dots + C_n^k \cdot B^k + \dots + C_n^{n-1} \cdot B_{n-1} + B^n$ où:

$$C_n^k = \frac{n!}{k!(n-k)!}$$

- **a.** Vérifier que, pour $n \ge 3$: $A^n = I + C_n^1 \cdot B + C_n^2 \cdot B^2$
- **b.** Montrer, à l'aide des résultats du 1. :

$$A^{n} = \begin{pmatrix} 1 & 0 & n \\ n & 1 & \frac{n(n+1)}{2} \\ 0 & 0 & 1 \end{pmatrix} \text{ pour tout entier } n, \ n \geqslant 3$$

- **4.** Application : on considère le graphe orienté G de sommets X, Y et Z, pris dans cet ordre et dont la matrice d'adjacence est la matrice A.
 - **a.** Donner une représentation géométrique du graphe G.
 - **b.** Déterminer, à l'aide des questions précédentes, le nombre de chemins de longueur 5 du sommet *Y* au sommet *Z*.

Exercice 3 9 points

Une entreprise a mis au point un circuit électronique formé essentiellement de deux composants distincts C_1 et C_2 montés en parallèle de telle sorte que ce circuit ne peut tomber en panne que lorsque les deux composants C_1 et C_2 sont simultanément en panne.

Partie A

Au bout de 6 000 heures d'utilisation du circuit électronique composé des éléments C_1 et C_2 , on considère les évènements suivants :

A: « Le composant C_1 n'a pas eu de panne »;

B : « Le composant C_2 n'a pas eu de panne ».

On considérera que les pannes des composants C_1 et C_2 sont indépendantes et que les probabilités respectives des évènements A et B sont : p(A) = 0,22 et p(B) = 0,05. Pour tous les calculs de probabilités demandés dans cette partie, on donnera les résultats sous leur forme approchée décimale arrondie à 10^{-2} près.

- 1. On note \overline{A} et \overline{B} les évènements contraires des évènements A et B. Calculer la probabilité de chacun des évènements \overline{A} et \overline{B} .
- **2. a.** Calculer la probabilité que le circuit électronique tombe en panne au bout de 6 000 heures.
 - **b.** En déduire la probabilité que le circuit électronique fonctionne sans panne au bout de 6 000 heures.
- **3.** Le composant C_1 peut avoir plusieurs pannes dans la période des premières heures d'utilisation. On admet que le nombre de pannes du composant C_1 dans la période des 6 000 premières heures d'utilisation suit la loi de Poisson de paramètre 1,5. On note X la variable aléatoire associée au nombre de pannes du composant C_1 au cours de cette période.
 - **a.** Déterminer la probabilité que le composant C_1 ait au plus deux pannes au bout de 6 000 heures.
 - **b.** Déterminer la probabilité que le composant C_1 ait au moins une panne au bout de 6 000 heures.

Partie B

Le service qualité de l'entreprise, chargé de tester le temps de fonctionnement de ce circuit électronique, vérifie d'abord le nombre d'heures de fonctionnement de chacun des composants C_1 et C_2 . Les résultats obtenus sont les suivants :

Les fonctions f_1 et f_2 correspondant respectivement à la probabilité que les composants C_1 et C_2 fonctionnent sans panne au bout de t milliers d'heures d'utilisation, sont définies sur $[0; +\infty[$ par :

$$f_1(t) = e^{-0.25t}$$
 et $f_2(t) = e^{-0.5t}$.

- 1. Études des fonctions. Tracés des courbes représentatives
 - **a.** Étudier le sens de variation de chacune des fonctions f_1 et f_2 .
 - **b.** Comment peut-on interpréter ces résultats pour les composants C_1 et C_2 ?
 - **c.** Tracer, sur le même graphique, les courbes représentatives G_1 et G_2 des fonctions f_1 et f_2 .
 - On tracera les deux courbes sur l'intervalle [0; 6] en prenant pour unités :
 - 1 cm pour 500 heures en abscisse;
 - 10 cm pour la probabilité égale à 1, en ordonnée.
- **2. a.** Déterminer graphiquement pour chaque composant, au bout de combien d'heures, on aura une probabilité qu'il fonctionne sans panne, égale à 0.37.
 - On indiquera tous les tracés utiles et on arrondira le résultat à une centaine d'heures près.
 - **b.** En déduire, par lecture graphique, lequel des deux composants fonctionnera le plus longtemps sans panne.