☞ Brevet des collèges Caen septembre 1973 ∾

Exercice I

On considère la fonction polynôme f dans \mathbf{R} définie par

$$f(x) = (3x-2)(-x+8) + 9x^2 - 4.$$

- **1.** Développer et réduire f(x).
- **2.** Écrire f(x) sous la forme d'un produit de deux polynômes du premier degré.
- 3. Calculer

$$f(-3)$$
, $f\left(\frac{2}{3}\right)$ et $f\left(\sqrt{2}-1\right)$.

Sachant que $\sqrt{2}$ est compris entre les décimaux 1,414 et 1,415, donner un encadrement de $f(\sqrt{2}-1)$.

4. Résoudre dans Z l'équation

$$f(x) = 0$$
.

5. Résoudre dans R l'équation

$$f(x) = 0$$
.

Exercice II

Soit la fonction rationnelle f dans \mathbf{R} définie par

$$f(x) = \frac{x^2 - 4x + 4}{x - 2}.$$

- 1. Sur quel ensemble, E, la fonction rationnelle f est-elle définie?
- **2.** x étant élément de E, donner une expression plus simple de f(x), que l'on désignera par g(x).
- **3.** Construire la représentation graphique de la fonction polynôme définie dans **R** par g(x).

Exercice III

Dans un plan (*P*) rapporté à un repère orthonormé $(0, \vec{\iota}, \vec{J})$, les points A, B et C ont pour coordonnée respectives

A(-3; 1), B(1; 5) et
$$C(-6; 4)$$
.

- 1. Trouver les coordonnées du milieu, M du segment [BC].
- 2. Calculer les distances suivantes

Brevet des collèges A. P. M. E. P.

d(A, B), d(A, C) et d(B, C).

et montrer que le triangle de sommets A, B et C est rectangle.

3. Soit D le point de coordonnées (0; 2).

Montrer que les points A, B, C et D sont éléments d'un même cercle.

4. v désignant l'écart angulaire (exprimé en degrés) de l'angle géométrique \widehat{ABC} , déterminer $\sin v$.

Donner un encadrement de ν en utilisant le tableau suivant :

degrés	34	35	36	37	38	39
sinus	0,5592	0,5736	0,5878	0,6018	0,6157	0,6293