∞ Brevet Créteil septembre 1979 ∾

ALGÈBRE

Soit f l'application, de \mathbb{R} dans \mathbb{R} , définie par

$$f(x) = 4(x-3)^2 - 9(x+2)^2$$
.

- 1. Développer et réduire f(x).
- **2. a.** Factoriser f(x).
 - **b.** Résoudre, dans \mathbb{R} , l'équation f(x) = 0.
 - **c.** Montrer que, pour tout réel *x* tel que

$$-12 < x < 0$$
, $f(x) > 0$.

- **3.** Calculer f(x) pour les valeurs suivantes de x: et faire un tableau mettant en évidence les résultats obtenus.
 - **b.** Représenter les points de coordonnées (x,!(x)), pour les valeurs de x indiquées au 3. a., dans un plan rapporté à un repère $(O, \overrightarrow{i}, \overrightarrow{j})$ on dessinera les axes (O, \overrightarrow{i}) et (O, \overrightarrow{j}) orthogonaux et on prendra 1 cm pour unité graphique sur (O, \overrightarrow{i}) , 1 cm pour 20 unités graphiques sur (O, \overrightarrow{j}) .
- **4.** Factoriser f(x) 180; en déduire que, pour tout réel x, $f(x) \le 180$.
- **5.** Montrer que, pour tout réel x tel que $-12 \le x \le 0$,
 - **a.** $\sqrt{f(x)}$ existe;
 - **b.** $0 \leqslant \sqrt{f(x)} \leqslant 6\sqrt{5} < 14$.

GÉOMÉTRIE

1. **a.** Dans le plan euclidien rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) dessiner les points A, B et C définis par leurs coordonnées

$$A(2; 0), B(0; 4), C(-3; 0)$$

et la droite (Δ) d'équation x - 2y + 3 = 0.

- **b.** Prouver que le point C appartient à la droite (Δ) et calculer l'ordonnée du point I de (Δ) dont l'abscisse est $-\frac{1}{2}$.
- **2. a.** Calculer les distances d(C, A) et d(C, B).
 - **b.** Démontrer que les droites (AB) et (Δ) sont orthogonales.
 - **c.** Que représente la droite (Δ) pour le segment [AB]? La droite d'équation $x = -\frac{1}{2}$ pour le segment [AC]?
- **3. a.** Démontrer que les points A, B et C appartiennent à un même cercle $\mathscr C$ de centre I et que la tangente en C à $\mathscr C$ est parallèle à la droite (AB).
 - **b.** La droite (6) coupe le cercle $\mathscr C$ en C et en un second point O. Calculer les coordonnées de D.
 - **c.** Calculer le rayon r de \mathscr{C} .

Comparer la valeur calculée de *r* et celle mesurée sur le dessin.