→ Brevet d'Études du Premier Cycle → Paris septembre 1955 ALGÈBRE

1. Mettre sous forme de produits de facteurs, les expressions

$$Y_1 = (5-3x)(x-4) - (5-3x)(2x-3),$$
 $Y_2 = 9x^2 - 25.$

- **2.** Calculer le quotient de Y_1 par Y_2 . Pour quelles valeurs de x ce quotient ne peut-il être calculé?
- **3.** Construire les droites représentatives des fonctions $y_1 = x + 1$ et $y_2 = 3x + 5$. Calculer les coordonnées du point d'intersection, P, de ces deux droites. Quelle est pour la valeur de x ainsi calculée la valeur du quotient $\frac{y_1}{y_2}$?
- **4.** Former l'équation de la droite y_3 passant par $A\left(-1; \frac{5}{3}\right)$ et par B(4; 0). Préciser, en la justifiant, la position relative des droites y_2 et y_3 .

GÉOMÉTRIE

Dans une cercle \mathscr{C} de centre O, de rayon R, on mène deux diamètres perpendiculaires, [AB] et [CD].

Par un point M quelconque de l'arc \widehat{AD} , on mène une tangente qui coupe les prolongements de [CD] en E et de [BA] en F.

- 1. Démontrer que l'angle $\widehat{\text{MEO}}$ est double de l'angle $\widehat{\text{MBO}}$.
- **2.** Quelle position particulière faut-il donner au point M pour que l'angle \widehat{EFO} mesure 30°?
- **3.** Dans ce cas particulier, calculer, en fonction de R, les longueurs OF, MF, EF, ME, OE, MB ainsi que l'aire des triangles EOF et FMB.