∽ Brevet Poitiers février 1960 ∾

ENSEIGNEMENT LONG

ALGÈBRE

On considère les trois fonctions suivantes de la variable x:

$$y_1 = 2x + 2$$
, $y_2 = 3x + 3$, $y_3 = -x - 1$.

- 1. Étudier le sens de variation de chacune de ces trois fonctions et dessiner avec soin les trois droites D_1 , D_2 et D_3 représentatives de ces fonctions dans un même système d'axes de coordonnées rectangulaires x'Ox, y'Oy (unité de longueur arbitraire, mais choisir la même unité sur les deux axes : bien préciser cette unité sur le graphique). Montrer que ces trois droites sont concourantes en un point d'abscisse -1.
- **2.** Montrer que les trois fonctions étudiées sont de la forme y = a(x+1). Préciser la valeur numérique de a correspondant à chacune des fonctions.
- **3.** Montrer qu'à chaque valeur de x on a toujours

$$3y_1 = 2y_2$$
 et $y_1 + 2y_2 = 0$.

En déduire les valeurs des rapports $\frac{y_1}{y_2}$ et $\frac{y_1}{y_3}$.

4. Un axe parallèle à l'axe y'Oy et de mème sens coupe x'Ox en un point H et les droites D_1 , D_2 et D_3 , respectivement aux points A_1 , A_2 , A_3 .

Évaluer, en fonction de OH = x, les mesures algébriques de HA₁, HA₂, HA₃.

Préciser la position du point A_1 sur le segment $[HA_2]$ et la position du point H sur le segment $[A_1A_2]$.

Comparer les trois longueurs A₃H, HA₁ et A₁A₂.

GÉOMÉTRIE

1. Soit un segment [AB] de longueur égale à 8 cm.

Construire les points C et D qui divisent ce segment dans le rapport $\frac{5}{3}$.

Calculer la longueur des segments [CA], [CB]], [DA] et [DB].

2. Soit O le milieu de [CD]. Vérifier que

$$\overline{AC} \cdot \overline{AD} = \overline{AB} \cdot \overline{AO}$$
.

3. On considère le cercle de diamètre [CD].

Soit M un point du cercle tel que AM = 8 cm; (AM) recoupe le cercle en P.

Montrer que AM \cdot AP = AC \cdot AD; calculer AP.

4. Montrer que (MB) et (PO) sont parallèles.

On mène par M la parallèle à (AD), qui coupe en I le segment [PD].

Montrer que $\frac{OB}{OA} = \frac{MI}{AD}$

Calculer MI.