∞ Brevet Poitiers septembre 1980 ∾

Algèbre

Soit f la fonction polynôme définie ci-dessous :

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto (3x+2)(6x-5)-6x-4-\left(9x^2-4\right).$$

- **1.** Développer, réduire et ordonner f(x).
- **2.** Montrer que f(x) peut s'écrire sous la forme :

$$f(x) = (3x+2)(3x-1).$$

3. a. Calculer les images par f des réels :

$$\sqrt{3}$$
; $-\frac{2}{3}$; $\frac{1}{3}$.

- **b.** Utiliser les calculs ci-dessus pour répondre à la question : « *f* est-elle une bijection ? » ?
- 4. Soit la fonction polynôme

$$g: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto -12x + 4$$

- **a.** Résoudre, dans \mathbb{R} , l'équation : f(x) = g(x).
- **b.** Résoudre, dans \mathbb{R} , l'inéquation : $g(x) \leq 0$.
- **5. a.** Dans un plan muni d'un repère $(0, \overrightarrow{i}, \overrightarrow{j})$, tracer les représentations graphiques des fonctions affines, de \mathbb{R} dans \mathbb{R} , définies par

$$A(x) = 3x + 2$$
 ; $B(x) = 3x - 1$.

- **b.** Résoudre, dans \mathbb{R} l'équation : A(x) = B(x).
- c. Retrouver graphiquement les résultats de la question précédente.

Géométrie

Dans un plan (P) muni d'un repère orthonormé $(0, \vec{t}, \vec{j})$, on donne les points A, B et C dont les coordonnées dans ce repère sont

$$A(-5; -2); B(-3; 4); C(3; 2).$$

- 1. Déterminer les coordonnées des vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{BC} .
- **2.** Calculer d(A, B), d(A, C) et d(B, C). En déduire la nature du triangle (A, B, C).

- **3.** Déterminer les coordonnées du point 0 tel que le quadruplet (A, B, D, C) définisse un parallélogramme.
- **a.** Déterminer le point E symétrique du point O dans la symétrie de centre C.
 - **b.** Quelle est la nature du quadruplet (A, B,C, E)?
- **5.** Soit le point F(9; 0).
 - a. Montrer que les points B, C et F sont alignés.
 - **b.** Soit α l'écart angulaire, en degrés, de l'angle géométrique \widehat{AFB} . Calculer $\tan \alpha$. En déduire la valeur approchée, par défaut à un degré près, de v.

On donne l'extrait de table suivant :

α	$\sin \alpha$	$\tan \alpha$	$\cos \alpha$
25	0,4226	0,4663	0,9063
26	0,4384	0,4877	0,8988
27	0,4540	0,5095	0,8910
28	0,4695	0,5317	0,8829