∽ Brevet des collèges Toulouse juin 1974 ∾

ALGÈBRE

1. Soit f l'application de R dans R définie par

$$f(x) = 2x^2 - 3x - 5.$$

Calculer
$$f(0)$$
, $f(-2)$, $f\left(\frac{7}{2}\right)$ et $f\left(2-\sqrt{5}\right)$.

L'application f est-elle bijective?

2. Montrer que pour tout réel x on a

$$f(x) = (2x-5)(x+1).$$

3. Soit g, h et k les applications de \mathbf{R} dans \mathbf{R} définies par :

$$g(x) = 4x^2 - 25,$$

$$h(x) = 5 - 2x,$$

$$k(x) = f(x) + g(x) - 2h(x).$$

Factoriser g(x), puis k(x).

4. Résoudre dans **R** l'équation f(x) = 0.

Résoudre dans **R** l'équation f(x) = g(x).

5. a. Déterminer l'ensemble, *S*, des entiers relatifs *x* tels que

$$-1 \le h(x) < 9$$
.

On écrira tous les éléments de l'ensemble S.

b. Représenter graphiquement la fonction h dans un plan muni d'un repère $(0, \vec{l}, \vec{j})$. Vérifier graphiquement les résultats obtenus à la question précédente.

GÉOMÉTRIE

Dans un plan euclidien muni d'un repère orthonormé $(0, \vec{i}, \vec{j})$, on considère les points

$$A(-2; 5), B(-1; -2)$$
 et $C(3; 0)$.

1. Calculer les distances AB, AC et BC.

Que peut-on en conclure pour le triangle (A, B, C)?

- 2. Trouver une équation de la médiatrice de [BC].
- 3. Calculer les coordonnées du milieu M de (A, B) et du milieu N de (A, C).

Que peut-on dire des vecteurs \overrightarrow{MN} et \overrightarrow{OC} ?

4. On donne $\overrightarrow{OD} = x \overrightarrow{i} + 6 \overrightarrow{i}$.

Déterminer le réel x de sorte que les vecteurs \overrightarrow{AB} et \overrightarrow{AD} soient orthogonaux.

Démontrer que D appartient au cercle de centre A et de rayon AB, lorsque x a la valeur ainsi trouvée.

5. Soit E l'image de A dans la translation de vecteur \overrightarrow{OC} .

Calculer les coordonnées de E.

Calculer les coordonnées du point d'intersection des droites (AC) et (BE).