

EXERCICE 1 5 points

1. a. Le fait de considérer la présence des 12 groupes inscrits peut être assimilée à une loi binomiale de paramètres n=12 et $p=\frac{7}{8}$ (probabilité d'être présent).

La probabilité d'avoir 12 groupes présents est donc égale à $\binom{12}{0} \left(\frac{7}{8}\right)^{12} =$

$$\left(\frac{7}{8}\right)^{12} \approx 0,201.$$

Cette probabilité est donc comprise entre 0,20 et 0,21.

b. On a à nouveau une loi binomiale de paramètres n = 30 (jours), et de probabilité qu'il soient tous présents égale à $\left(\frac{7}{8}\right)^{12}$.

X=30 est l'évènement : « les 12 groupes étaient présents les 30 jours ». Sa probabilité est égale à :

X=0 est l'évènement : « il n'y a jamais eu les 12 groupes présents les 30 jours » ou encore « les 30 jours, il y a eu au moins un groupe absent ». Sa probabilité est égale à :

L'espérance mathématique de X est égale $X = n \times p = 30 \times \left(\frac{7}{8}\right)^{12} \approx 6,042 \approx 6,04$ (à 0,01 près).

c. *S* = 11 signifie qu'il y a ce jour 11 groupes présents, donc 1 groupe absent. La probabilité de cet évènement est égale à :

La loi suivie par S est la même que celle suivie par le nombre de groupes présents, donc de paramètres n=12 et de probabilité $\frac{7}{8}$. On sait que

$$p(S=k) = {12 \choose k} \left(\frac{7}{8}\right)^k \times \left(\frac{1}{8}\right)^{12-k}$$

L'espérance mathématique est donc égale à $12 \times \frac{7}{8} = 10,5$.

Sur une longue période, l'association récoltera en moyenne 10,5 Crédits.

2. a. On a toujours une loi binomiale de paramètres n=13 et de probabilité $p=\frac{7}{8}$. La probazbilité P_{13} que les treize groupes soient présents est

$$P_{13} = {13 \choose 13} \left(\frac{7}{8}\right)^{13} \times \left(\frac{1}{8}\right)^{0} = \left(\frac{7}{8}\right)^{13} \approx 0,176 \approx 0,18.$$

b. La variable *R* vaut 0 s'il y a au moins 1 groupe absent et 2 s'il y a 13 groupes présents. Dans ce cas :

 $P(R=2) = \left(\frac{7}{8}\right)^{13} \approx 0,18$ comme vu ci-dessus et par conséquent $P(R=0) = 1 - P(R=2) \approx 0,82$. On a donc la loi :

r	0	2	
P(R=r)	0,82	0,18	

On en déduit l'espérance mathématique de R:

$$E(R) = 0 \times 0,82 + 2 \times 0,18 = 0,36.$$

Sur une longue période le coût de l'activité de substitution est environ de 0,36 Crédit.

c. De k=0 à k=12, l'association reçoit k Crédits. Par contre s'il y a 13 groupes, l'association ne reçoit que 11(13-2) Crédits.

L'espérance du gain G est donc :

Le calcul donne $E(G) \approx 11,02$ Crédits

$$\begin{split} \mathbf{E}(G) &= \sum_{k=0}^{12} k \times P(G=k) + 11 P_{13} = \sum_{k=0}^{12} k \times P(G=k) + 13 P_{13} - 2 P_{13} = \sum_{k=0}^{12} k \times \\ \left(\frac{13}{k}\right) \left(\frac{7}{8}\right)^k 0^{13-k} + 13 \times \left(\frac{7}{8}\right)^{13} - 2 \times \left(\frac{7}{8}\right)^{13} = \sum_{k=0}^{13} k \times \left(\frac{13}{k}\right) \left(\frac{7}{8}\right)^k 0^{13-k} - 2 P_{13}. \end{split}$$

d. On constate que cette espérance est supérieure à celle (10,5) obtenue avec 12 groupes.

Conclusion : la décision du dirigeant est rentable pour l'association.

EXERCICE 2 Enseignement obligatoire

4 points

1. **a.**
$$\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IM} = \overrightarrow{ID} \iff \overrightarrow{AI} + \overrightarrow{ID} = \overrightarrow{IB} + \overrightarrow{IM}$$
. En utilisant l'égalité de Chasles : $\overrightarrow{AD} \cdot \overrightarrow{BM} = \left(\overrightarrow{AI} + \overrightarrow{ID}\right) \cdot \left(\overrightarrow{BI} + \overrightarrow{IM}\right) = \left(\overrightarrow{IB} + \overrightarrow{IM}\right) \cdot \left(\overrightarrow{BI} + \overrightarrow{IM}\right) = \left(\overrightarrow{IM} + \overrightarrow{BI}\right) \cdot \left(\overrightarrow{IM} - \overrightarrow{BI}\right) = \left\|\overrightarrow{IM}\right\|^2 - \left\|\overrightarrow{BI}\right\|^2 = R^2 - R^2 = 0.$

Il en résulte que les droites (AD) et (BM) sont perpendiculaires.

De même
$$\overrightarrow{BD} \cdot \overrightarrow{AM} = \left(\overrightarrow{BI} + \overrightarrow{ID}\right) \cdot \left(\overrightarrow{AI} + \overrightarrow{IM}\right) = \left(\overrightarrow{IA} + \overrightarrow{IM}\right) \cdot \left(\overrightarrow{AI} + \overrightarrow{IM}\right) = 0$$

(car $\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IM} = \overrightarrow{ID} \iff \overrightarrow{BI} + \overrightarrow{ID} = \overrightarrow{IA} + \overrightarrow{IM}$).

Donc les droites (BD) et (AM) sont perpendiculaires.

Dans le triangle ABM, (AD) et (BD) sont deux hauteurs, donc D est l'orthocentre de ce triangle.

b. Par définition de l'isobarycentre :

$$\overrightarrow{GA} + \overrightarrow{G} + \overrightarrow{G} = \overrightarrow{0} \iff \overrightarrow{GI} + \overrightarrow{IA} + \overrightarrow{GI} + \overrightarrow{IB} + \overrightarrow{GI} + \overrightarrow{IM} = \overrightarrow{0} \iff 3\overrightarrow{GI} + \overrightarrow{ID} = \overrightarrow{0} \iff \overrightarrow{ID} = 3\overrightarrow{IG}.$$

Cette égalité peut aussi s'écrire : $\overrightarrow{IG} = \frac{1}{3}\overrightarrow{ID}$ ce qui signifie que le point G appartient à la droite (ID) et a pour abscisse $\frac{1}{3}$ pour le repère (I,D).

2. a. Points invariants : $M = M' \iff z = \frac{1}{3}z + 2 + \frac{2}{3}i \iff 2z = 6 + 2i \iff z = 3 + i$. Il existe donc un point unique Ω d'affixe $\omega = 3 + i$ invariant par f.

Calculons
$$Z - \omega = \frac{1}{3}z + 2 + \frac{2}{3}i - 3 - i = \frac{1}{3}z - 1 - \frac{1}{3}i = \frac{1}{3}(z - 3 - i) = \frac{1}{3}[z - (3 - i)].$$

Donc $Z - \omega = \frac{1}{3}(z - \omega)$, ce qui traduit que M' d'affixe Z est l'image de M

d'affixe z dans l'homothétie f de centre Ω et de rapport $\frac{1}{3}$.

b. Par définition l'isobarycentre des points A, B et M a pour affixe $\frac{1}{3}(z_A+z_B+z_M)=\frac{2+4+2\mathrm{i}+z}{3}=\frac{1}{3}z+2+\frac{2}{3}\mathrm{i}=z_{f(M)}.$

4 points

- c. D'après la question 2. a. l'image du cercle de centre I et de rayon 2 est un cercle homothétique de ce cercle dans l'homothétie de centre Ω et de rapport $\frac{1}{3}$.
- **d.** D'après la question 1. b. l'ensemble décrit par le point *D* est le cercle homothétique du cercle de centre I et de rayon 2, dans l'homothétie de centre I et de rapport 3.

Exercice 2 Enseignement de spécialité

$$78x^3 + ux^2 + vx - 14 = 0.$$

- 1. **a.** $\frac{14}{39}$ est solution de l'équation signifie $78\left(\frac{14}{39}\right)^3 + u\left(\frac{14}{39}\right)^2 + v\left(\frac{14}{39}\right) 14 = 0 \iff 2 \times \frac{14^3}{39^2} + u\frac{14^2}{39^2} + v\frac{14}{39} 14 = 0 \iff 2\frac{14^2}{39^2} + u\frac{14}{39^2} + v\frac{1}{39} 1 = 0 \iff 2 \times 14^2 + 14u + 39v 39^2 = 0 \iff 14u + 39v = 39^2 2 \times 14^2 \iff 14u + 39v = 1129.$
 - **b.** $39 = 3 \times 13$ et $14 = 2 \times 7$ sont premiers entre eux. On sait qu'il existe un couple (x; y) d'entiers vérifiant 14x + 39y = 1.

 $\begin{array}{rcl}
39 & = & 2 \times 14 + 11 \\
14 & = & 1 \times 11 + 3 \\
11 & = & 3 \times 3 + 2 \\
3 & = & 1 \times 2 + 1
\end{array}$

soit en remontant

$$3-2$$
 = 1
 $3-(11-3\times3)$ = 1 \iff 4 × 3 - 11 = 1
 $14-(1\times11)$ = 3 \implies 4[14-11]-11 = 1 \iff 4 × 14-5 × 11 = 1
 $39-2\times14$ = 11 \implies 4 × 14-5(39-2 × 14) = 1 \iff -5 × 39+14 × 14 = 1
On a donc trouvé $x=14$, $y=-5$.

On a $-25 \times 14 + 9 \times 39 = -350 + 351 = 1$. Donc le couple (-25; 9) est aussi solution de l'équation.

c.
$$-25 \times 14 + 9 \times 39 = 1 \Rightarrow -25 \times 1129 \times 14 + 9 \times 1129 \times 39 = 1129 \iff 14 \times -28225 + 39 \times 10161 = 1129.$$

Le couple $(u_0; v_0) = (-28225; 10161)$ est donc solution de l'équation 14u + 39v = 1129.

On a:

$$14u + 39v = 1129$$

$$14 \times -28225 + 39 \times 10161 = 1129$$

d'où par différence:

$$14(u+28225)+39(v-10161)=0 \iff 14(u+28225)=39(10161-v).$$
 (1)

Donc 14 divisant 39(10161 - v) et étant premier avec 39, divise

(10161 - v). Il existe donc $k \in \mathbb{Z}$ tel que $10161 - v = 14k \iff$

 $\nu = 10161 - 14k$, puis en reportant dans l'égalité (1) :

 $14(u+28225) = 39(14k) \iff u+28225 = 39k \iff u = 39k-28225.$

L'ensemble des couples solutions est donc

$$S = \{(39k - 28225 ; 10161 - 14k), k \in \mathbb{Z}\}.$$

d. On a
$$39k - 28225 = 0 \iff k = \frac{28225}{39} \approx 724$$
.

Vérification: $39 \times 724 - 28225 = 11$ et $39 \times 723 - 28225 = -28$.

On en déduit $v = 10161 - 14 \times 724 = 25$.

Le couple solution avec le plus petit premier terme naturel est (11 ; 25).

Antilles-Guyane 3 septembre 2003

- **2. a.** $78 = 2 \times 3 \times 13$ et $14 = 2 \times 7$ On a $\mathcal{D}_{78} = \{1; 2; 3; 6; 13; 26; 39; 78\}$ et $\mathcal{D}_{14} = \{1; 2; 7; 14\}.$
 - **b.** $\frac{P}{O}$ une solution rationnelle de l'équation (1) signifie

$$78\frac{P^3}{Q^3} + u\frac{P^2}{Q^2} + v\frac{P}{Q} - 14 = 0 \iff 78P^3 + uP^2Q + vPQ^2 - 14Q^3 = 0 \iff P(78P^2 + uPQ + vQ^2) = 14Q^3.$$

Comme P divise $14Q^3$ et est premier avec Q, il divise 14.

De même on peut écrire $14Q^3 - vPQ^2 - uP^2Q = 78P^3 \iff$

$$Q(14Q^2 - \nu PQ - uP^2) = 78P^3$$
.

Q divise $78P^3$, est premier avec P donc avec P^3 : il divise 78.

c. On a donc $P \in \mathcal{D}_{14}$ et aussi leurs opposés et $Q \in \mathcal{D}_{78}$ et leurs opposés.

En théorie il y a $4 \times 8 = 32$ possibilités avec des termes positifs, mais comme P et Q doivent être premiers entre eux, si P est pair Q ne peut l'être et inversement. Il faut donc enlever $2 \times 4 = 8$ couples. Il faut également enlever les 4 couples avec Q = 1 qui donnent une solution entière.

Il reste donc 20 couples positifs et autant de négatifs, soit 40 couples possibles.

Les 20 rationnels positifs non entiers possibles sont :

$$\frac{1}{2}; \frac{1}{3}; \frac{1}{6}; \frac{1}{13}; \frac{1}{26}; \frac{1}{39}; \frac{1}{78}; \frac{2}{3}; \frac{2}{13}; \frac{2}{39}; \frac{7}{2}; \frac{7}{3}; \frac{7}{6}; \frac{7}{13}; \frac{7}{26}; \frac{7}{39}; \frac{7}{78}; \frac{14}{3}; \frac{14}{13}; \frac{14}{39}.$$

PROBLÈME 10 points

Partie A - étude préliminaire d'une fonction φ définie sur \mathbb{R} par $\varphi(x) = (2-x)e^x - 1$

1. • En $-\infty$: $f(x) = 2e^x - xe^x - 1$.

En posant
$$y = -x$$
, $-xe^{x} = ye^{-y} = \frac{y}{e^{y}}$.

Donc
$$\lim_{x \to -\infty} -xe^x = \lim_{y \to +\infty} \frac{y}{e^y} = 0.$$

Donc
$$\lim_{r \to -\infty} = -1$$
.

- En $+\infty$: $\lim_{x \to +\infty} (2-x) = -\infty$ et $\lim_{x \to +\infty} e^x = +\infty$, donc par produit de limites, $\lim_{x \to +\infty} \varphi(x) = -\infty$.
- **2.** φ est une somme de produits de fonctions continuez et dérivables sur \mathbb{R} , elle est donc continue et dérivable sur \mathbb{R} et :

$$\varphi'(x) = -e^+(2-x)e^x = (1-x)e^x$$
 qui est du signe de $(1-x)$ car quel que soit $x \in \mathbb{R}$, $e^x > 0$.

On a donc $\varphi'(x) > 0 \iff x < 1, \ \varphi'(x) < 0 \iff x > 1$. D'où le tableau de variations:

x	-∞		1	+∞
$\varphi'(x)$		+	0	-
φ	-1		e-1	

On a
$$\varphi(-2) = 4e^{-2} - 1 \approx -0.45$$
.
 $\varphi(0) = 2 - 1 = 1$, $\varphi(1) = e - 1$ et enfin $\varphi(2) = 0 - 1 = -1$

3. On a $\varphi(-2) < 0$ et $\varphi(0) > 0$; la fonction φ étant continue et croissante sur]-2; 0[elle s'annule une seule fois en $\alpha \in]-2$; 0[.

De la même façon elle s'annule en $\beta \in [1; 2]$.

- **4.** La calculatrice donne $-1, 15 < \alpha < -1, 14$ et $1, 84 < \beta < 1, 85$.
- 5. On sait que $\varphi(\alpha) = 0 \iff (2 \alpha)e^{\alpha} 1 = 0 \iff (2 \alpha)e^{\alpha} = 1 \iff e^{\alpha} = \frac{1}{2 \alpha}$ (car $\alpha \neq 2$).

Partie B - Étude d'une fonction f définie par $f(x) = \frac{e^x - 1}{e^x - x}$ et calcul intégral

1. Soit *e* la fonction définie sur \mathbb{R} par $e(x) = e^x - x$. Cette fonction est dérivable et pour tout x, $e'(x) = e^x - 1$ qui s'annule pour x = 0.

Donc sur \mathbb{R}_- , e'(x) < 0, donc e est décroissante de $+\infty$ à 1, et sur \mathbb{R}_+ , e'(x) > 0, donc e est croissante de 1 à $+\infty$.

Le minimum de la fonction est égal à 1, donc pour tout x réel $e^x - x \ge 1 > 0$. Conclusion : f est définie pour tout réel.

2. On a $\lim_{x \to -\infty} e^x - 1 = -1$ et $\lim_{x \to -\infty} e^x - x = +\infty$, donc $\lim_{x \to -\infty} f(x) = 0$.

On peut écrire en factorisant puis en simplifiant par le facteur non nul e^x :

$$f(x) = \frac{1 - e^{-x}}{1 - xe^{-x}}.$$
On a $\lim_{x \to -\infty} 1 - e^{-x} - 1$ et $\lim_{x \to -\infty} 1 - xe^{-x} - 1$ don

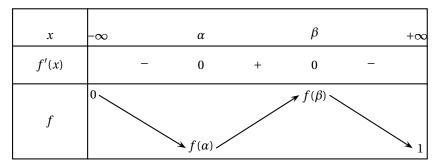
On a $\lim_{x \to +\infty} 1 - e^{-x} = 1$ et $\lim_{x \to +\infty} 1 - xe^{-x} = 1$, donc $\lim_{x \to +\infty} f(x) = 1$.

3. f quotient de fonctions dérivables, le dénominateur ne s'annulant pas sut \mathbb{R} est dérivable et pour tout $x \in \mathbb{R}$, $f'(x) = \frac{e^x (e^x - x) - (e^x - 1) (e^x - x)}{(e^x - x)^2} =$

$$\frac{e^{2x} - xe^x - e^{2x} - xe^{2x} + xe^x + xe^{2x}}{(e^x - x)^2} = \frac{2e^x - xe^x - 1}{(e^x - x)^2} = \frac{\varphi(x)}{(e^x - x)^2}.$$

Le signe de f'(x) est celui de $\varphi(x)$ vu à la partie A.

On obtient donc le tableau de variations suivant :



4. On a
$$f(\alpha) = \frac{e^{\alpha} - 1}{e^{\alpha} - \alpha}$$
.

On a vu dans la partie précédente que $e^{\alpha} = \frac{1}{2-\alpha}$, donc en remplaçant les exponentielles :

$$f(\alpha) = \frac{\frac{1}{2-\alpha} - 1}{\frac{1}{2-\alpha} - \alpha} = \frac{1-2+\alpha}{1-2\alpha+\alpha^2} = \frac{\alpha-1}{(\alpha-1)^2} = \frac{1}{\alpha-1}.$$

5. On a vu que si $e(x) = e^x - x$, $e'(x) = e^x - 1$, donc $f(x) = \frac{e'(x)}{e(x)}$.

Une primitive de f est donc la fonction F définie sur \mathbb{R} par $F(x) = \ln |e(x)| = \ln e(x) = \ln (e^x - x)$ (car on a vu que e(x) > 0 sur \mathbb{R}).

Antilles-Guyane 5 septembre 2003

$$\int_0^1 \frac{\mathrm{e}^x - 1}{\mathrm{e}^x - x} \, \mathrm{d}x.$$

On a donc $\int_0^1 f(x) dx = [F(x)]_0^1 = [\ln(e^x - x)]_0^1 = \ln(e - 1) - \ln 1 = (e - 1) \approx 0,5413 \approx 0,54.$ (au centième près)

Partie C - Étude de deux suites

1. La fonction est définie si $\frac{1}{2-x} > 0 \iff 2-x > 0 \iff x < 2$.

On a donc $D_g =]-\infty$; 2[. La fonction $x \mapsto \frac{1}{2-x}$ est croissante sur $]-\infty$; 2[et la fonction ln est croissante sur]0; $+\infty$ [, donc par composition, la fonction g est croissante sur $]-\infty$; 2[.

De même les deux fonctions étant continues, la fonction g est continue sur $]-\infty$; 2[.

Comme
$$\lim_{x \to -\infty} \frac{1}{2-x} = 0$$
, $\lim_{x \to -\infty} g(x) = -\infty$.
Comme $\lim_{x \to 2} \frac{1}{2-x} = +\infty$, $\lim_{x \to 2} g(x) = +\infty$.

2. On admet que que l'image par g de l'intervalle I = [-2; 0] est incluse dans cet intervalle.

a.
$$u_1 = g(u_0) = g(-2) = \ln\left[\frac{1}{2 - (-2)}\right] = \ln\left[\frac{1}{4}\right] = -2\ln 2 \in [-2; 0].$$

- Initialisation : on a donc $u_0 \in [-2; 0]$. La relation est vraie au rang 0.
- Hérédité : supposons que pour $n \in \mathbb{N}$ on ait $u_n \in [-2; 0]$.

On a donc $-2 \le u_n \le 0$. Par croissance de la fonction g, on a donc :

$$g(-2) \leqslant g(u_n) \leqslant g(0) \iff \ln\left[\frac{1}{4}\right] \leqslant g(u_n) \leqslant \ln\left[\frac{1}{2}\right] \iff -2\ln 2 \leqslant u_{n+1} \leqslant -\ln 2 \Rightarrow -2 \leqslant u_{n+1} \leqslant 0.$$

On a donc démontré que si pour $n \in \mathbb{N}$, $u_n \in [-2; 0]$, alors $u_{n+1} \in [-2; 0]$. La relation est vraie au rang 0, et si elle est vraie pour $n \in \mathbb{N}$, alors elle est vraie pour n+1. On a donc démontré par le principe de la récurrence que quel que soit $n \in \mathbb{N}$, $u_n \in [-2; 0]$.

- ★ Croissance de la suite :
- Initialisation : $u_0 \le u_1$: vraie
- Hérédité : supposons que pour $n \in \mathbb{N}$ on ait $u_n \leqslant u_{n+1}$; par croissance de la fonction $g,g(u_n) \leqslant g(u_{n+1}) \iff u_{n+1} \leqslant u_{n+2}$.

La relation est vraie au rang 0, et si elle est vraie pour $n \in \mathbb{N}$, alors elle est vraie pour n+1. On a donc démontré par le principe de la récurrence que la suite (u_n) est croissante.

b.
$$v_0 = 0 \Rightarrow u_1 = g(v_0) = g(0) = \ln \frac{1}{2} = -\ln 2.$$

On a donc $-2 \leqslant u_1 \leqslant v_1 \leqslant v_0 \leqslant 0.$

Démonstration par récurrence :

- Initialisation : on vient d'initialiser la propriété.
- Hérédité : supposons que pour $n \in \mathbb{N}$ on ait

 $-2 \le u_n \le v_n \le v_{n-1} \le 0$. Par application de la fonction g qui est croissante sur [-1; 0], on obtient :

$$g(-2) \leqslant g(u_n) \leqslant g(v_n) \leqslant g(v_{n-1}) \leqslant g(0)$$

soit $-2\ln 2 \leqslant u_{n+1} \leqslant v_{n+1} \leqslant v_n \leqslant -\ln 2 \Rightarrow -2 \leqslant u_{n+1} \leqslant v_{n+1} \leqslant v_n \leqslant 0$. La relation est vraie au rang n+1.

La relation est vraie au rang 0, et si elle est vraie pour $n \in \mathbb{N}$, alors elle est vraie pour n+1. On a donc démontré par le principe de la récurrence que quel que soit $n \in \mathbb{N}$, $-2 \le u_n \le v_n \le v_{n-1} \le 0$.

La récurrence est établie.

3. a. par:

m est une somme de fonctions dérivables sur $[0; +\infty[$; elle est donc dérivable et sur $[0; +\infty[$, $m'(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x} > 0$ puisque c'est un quotient de termes positifs.

Donc *m* est croissante sur $[0; +\infty[$ et $m(0) = 0 - \ln 1 = 0.$

Conclusion: la fonction est positive, soit $x - \ln(1+x) \ge 0 \iff \ln(1+x) \le x$.

b. Pour tout entier
$$n$$
, $v_{n+1} - u_{n+1} = g(v_n) - g(u_n) = \ln\left(\frac{1}{2 - v_n}\right) - \ln\left(\frac{1}{2 - u_n}\right) = -\ln\left(2 - v_n\right) + \ln\left(2 - u_n\right) = \ln\frac{2 - u_n}{2 - v_n} = \ln\frac{2 - v_n + v_n - u_n}{2 - v_n} = \ln\left[1 + \frac{v_n - u_n}{2 - v_n}\right].$
On a montré que tout entier n , $u_n \le v_n$, donc $v_n - u_n \ge 0$ et $-2 \le v_n \le 0 \iff 0 \le -v_n \le 2 \iff 2 \le 2 - v_n \le 4$, donc $2 - v_n \ge 0$.
Il en résulte que $\frac{v_n - u_n}{2 - v_n} \ge 0$.

Or on a montré que pour $x \in \mathbb{R}, x \ge 0$, $\ln(1+x) \le x$, en appliquant ce résultat à $x = \frac{v_n - u_n}{2 - v_n}$, on en déduit que $\ln\left[1 + \frac{v_n - u_n}{2 - v_n}\right] \le \frac{v_n - u_n}{2 - v_n}$.

Donc finalement

$$v_{n+1}-u_{n+1} \leq \frac{1}{2}(v_n-u_n).$$

On sait que:

$$-2 \leqslant v_n \leqslant 0 \iff 0 \leqslant -v_n \leqslant 2 \iff 2 \leqslant 2 - v_n \leqslant 4 \iff \frac{1}{4} \leqslant \frac{1}{2 - v_n} \leqslant \frac{1}{2} \iff \frac{u_n - v_n}{2} \leqslant \frac{v_n - u_n}{2 - v_n} \leqslant \frac{u_n - v_n}{2} \iff \ln\left[1 + \frac{v_n - u_n}{2 - v_n}\right] \leqslant \frac{v_n - u_n}{2 - v_n} \leqslant \frac{1}{2}(v_n - u_n).$$

Montrons par récurrence que pour tout naturel n, $v_n - u_n \le \frac{1}{2^n} (v_0 - u_0)$.

- Initialisation : pour
$$n = 0$$
, on a $v_0 - u_0 \le \left(\frac{1}{2}\right)^0 (v_0 - u_0)$ qui est vraie.

- Hérédité : supposons que pour
$$n \in \mathbb{N}$$
 on ait $v_n - u_n \leqslant \frac{1}{2^n} (v_0 - u_0)$.

On a montré que $v_{n+1} - u_{n+1} \le \frac{1}{2}(v_n - u_n)$ soit en utilisant l'hypothèse de récurrence :

$$v_{n+1} - u_{n+1} \leqslant \frac{1}{2} \times \left(\frac{1}{2}\right)^n (v_0 - u_0)$$
 soit
 $v_{n+1} - u_{n+1} \leqslant \left(\frac{1}{2}\right)^{n+1} (v_0 - u_0)$.

La relation est vraie au rang n + 1.

La relation est vraie au rang 0 et si elle est vraie au rang n, elle l'est au rang n+1.

On a donc démontré par le principe de récurrence que pour tout naturel $n, v_n - u_n \leqslant \frac{1}{2^n} (v_0 - u_0)$. On a vu que pour tout $n, v_n - u_n \geqslant 0$, donc finalement

$$0 \leqslant v_{n+1} - u_{n+1} \leqslant \left(\frac{1}{2}\right)^n (v_0 - u_0)$$

Comme $v_0 - u_0 \ge 0$ et que $\left(\frac{1}{2}\right)^n$ est une suite positive, la suite $(v_n - u_n)$ est une suite à termes positifs.

Comme $\lim_{n\to+\infty} \left(\frac{1}{2}\right)^n = 0$, le théorème des « gendarmes » montre que

$$\lim_{n\to+\infty}(v_n-u_n)=0.$$

Finalement la suite (u_n) est croissante, la suite (v_n) est décroissante et la limite de leurs différences est nulle : elles sont donc adjacentes, sont convergentes et ont donc la même limite.

4. La calculatrice donne $u_{10} \approx -1,14622$, donc à 10^{-4} près

$$-1,1463 \leqslant u_{10} \leqslant -1,1462.$$

De même on obtient $v_{10} \approx -1,14618$, donc à 10^{-4} près

$$-1,1462 \le v_{10} \le -1,1461.$$

Antilles-Guyane 8 septembre 2003