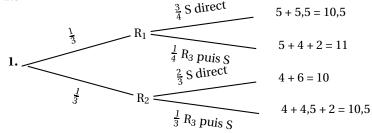
∘ Baccalauréat S Asie juin 2001 ∾

EXERCICE 1 4 points

Commun à tous les candidats



2.
$$p(E_1) = p_{R_1}(R_3) = 1 - p_{R_1}(S \text{ direct}) = 1 - \frac{3}{4} = \frac{1}{4}$$
.

L'évènement E_2 ou R_3 est la réunion des évènements disjoints $R_3\cap R_1$ et

 $R_3 \cap R_2$;

$$p(E_2) = p(R_3 \cap R_1) + p(R_3 \cap R_2) = \frac{1}{4} \times \frac{1}{3} + \frac{1}{3} \times \frac{2}{3} = \frac{1}{12} + \frac{2}{9} = \frac{3+8}{36} = \frac{11}{36}.$$

$$p(E_3) = p_{R_3}(R_1) = \frac{p(R_1 \cap R_3)}{p(R_3)} = \frac{\frac{1}{4} \times \frac{1}{3}}{\frac{11}{36}} = \frac{3}{11}.$$

$$p(E_4) = p_{\text{S direct}}(R_2) = \frac{p(\text{S direct} \cap R_2)}{p(\text{S direct})}.$$

Or
$$p(S \text{ direct}) = p(S \text{ direct} \cap R_1) + p(S \text{ direct} \cap R_2) = \frac{2}{3} \times \frac{2}{3} + \frac{3}{4} \times \frac{1}{3} = \frac{4}{9} + \frac{3}{12} = \frac{16+9}{36} = \frac{25}{36}$$
.

Donc
$$p(E_4) = \frac{\frac{2}{3} \times \frac{2}{3}}{\frac{25}{26}} = \frac{4}{9} \times \frac{36}{25} = \frac{16}{25}.$$

3. a. On a
$$p(X = 10) = p(R_2 \cap S \text{ direct}) = \frac{2}{3} \times \frac{2}{3} = \frac{4}{9}$$
.

$$p(X = 11) = p(R_1 \cap R_3) = \frac{1}{3} \times \frac{1}{4} = \frac{1}{12}.$$

$$p(X = 10, 5) = p(R_1 \cap S \text{ direct}) + p(R_2 \cap R_3) = \frac{1}{3} \times \frac{3}{4} + \frac{2}{3} \times \frac{1}{3} = \frac{1}{4} + \frac{2}{9} = \frac{17}{36}.$$

b.
$$E(X) = 10 \times \frac{4}{9} + 11 \times \frac{1}{12} + 10.5 \times \frac{17}{36} = \frac{371.5}{36} \approx 10.3194...$$
 soit 10.32 au centième près.

EXERCICE 2 5 points

Candidats n'ayant pas suivi l'enseignement de spécialité

$$z' = \frac{-iz - 2}{z + 1}.$$

1. On a
$$c' = \frac{-i(-i) - 2}{-i + 1} = \frac{-3}{1 - i} = \frac{-3(1 + i)}{(1 + i)(1 - i)} = \frac{-3(1 + i)}{2} = -\frac{3}{2}(1 + i)$$
.

D'où
$$|c'|^2 = \frac{9}{4}(1+1) = \frac{18}{4}$$
, donc $|c'| = \frac{3\sqrt{2}}{2}$.

En factorisant ce module on peut donc écrire :

$$c' = \frac{3\sqrt{2}}{2} \left(-\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2} \right) = \frac{3\sqrt{2}}{2} \left(\cos -\frac{3\pi}{4} + i\sin -\frac{3\pi}{4} \right) = \frac{3\sqrt{2}}{2} e^{-i\frac{3\pi}{4}}.$$

Baccalauréat S A. P. M. E. P.

2. Il faut résoudre l'équation :

$$\frac{-iz - 2}{z + 1} = \frac{1}{2} \iff 2(-iz - 2) = z + 1 \iff z(1 + 2i) = -4 - 1 \iff z = \frac{-5}{1 + 2i} \iff z = \frac{-5(1 - 2i)}{(1 + 2i)(1 - 2i)} \iff z = \frac{5(-1 + 2i)}{1 + 4} = -1 + 2i$$

3. **a.**
$$z' = \frac{-iz - 2}{z + 1} \Rightarrow z' + i = \frac{-iz - 2}{z + 1} + i \iff z' + i = \frac{-iz - 2 + iz + i}{z + 1} \iff (z' + i)(z + 1) = -2 + i.$$

On en déduit en prenant les modules des deux membres :

$$pp' = |-2 + i| = \sqrt{5}$$
.

b. Si le point M appartient au cercle (Γ) de centre A et de rayon 2, alors

$$\mathsf{A} M = 2 \iff |z - (-1)| = 2 \iff |z + 1| = 2 \iff p = 2.$$

Du résultat précédent on en déduit que $p' = \frac{\sqrt{5}}{2} = |z' + i| = CM'$: ceci signifie que l'image d'un point du cercle de centre A et de rayon 2, est un point du cercle de centre C et de rayon $\frac{\sqrt{5}}{2}$.

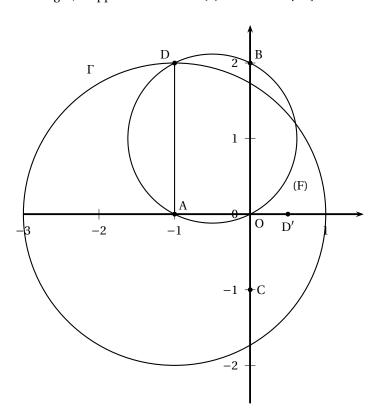
4. a. $\omega =$

Conclusion : les points M appartiennent au cercle (F) de diamètre [AB] privé des points A et B.

b. A a pour affixe -1 et D a pour affixe -1+2i, donc AD = 2; D appartient au cercle (Γ).

Comme OADB est un rectangle, D appartient au cercle (F) de diamètre [AB].

5.



EXERCICE 2
Candidats ayant suivi l'enseignement de spécialité

5 points

Baccalauréat S A. P. M. E. P.

1.

$$z' = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)\overline{z}.$$

$$\mathbf{a.} \quad (f \circ f)(z) = f[f(z)] = f\left(\left(\frac{1}{2} + \mathrm{i}\frac{\sqrt{3}}{2}\right)\overline{z}\right) = \left(\frac{1}{2} + \mathrm{i}\frac{\sqrt{3}}{2}\right) \times \overline{\left(\frac{1}{2} + \mathrm{i}\frac{\sqrt{3}}{2}\right)}\overline{z} = \left(\frac{1}{2} + \mathrm{i}\frac{\sqrt{3}}{2}\right) \times \left(\frac{1}{2} - \mathrm{i}\frac{\sqrt{3}}{2}\right) \times z = \left(\frac{1}{4} + \frac{3}{4}\right)z = z.$$

b. On voit que :
$$z \mapsto S(z) = \overline{z} \mapsto R[S(z)] = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)z = f(z)$$
.

R est la symétrie autour de l'axe des abscisses.

Ensuite on a vu à la question 1. que
$$\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) = 1 = \left|\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)\right|^2$$
.

$$\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$$
 est donc un complexe de module 1; on peut l'écrire

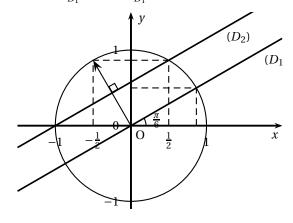
$$\left(\frac{1}{2} + i \frac{\sqrt{3}}{2}\right) = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} = e^{i\frac{\pi}{3}}.$$

On reconnaît dans *R* la rotation de centre O et d'angle $\frac{\pi}{3}$.

Ob a donc $f = R \circ S$.

c. R est la composée de la symétrie S autour de l'axe des abscisses et de la symétrie d'axe D_1 , cet axe contenant O et faisant un angle de $\frac{\pi}{6}$ avec l'axe des abscisses.

On a donc $f = R \circ S = S \circ S = S_{D_1} \circ S \circ S = S_{D_1}$.



$$z'' = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)\overline{z} - \frac{1}{2} + i\frac{\sqrt{3}}{2}.$$

2. a. *z* est invariant par *g* si et seulement si :

$$z = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)\overline{z} - \frac{1}{2} + i\frac{\sqrt{3}}{2} \iff x + iy = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)(x - iy) - \frac{1}{2} + i\frac{\sqrt{3}}{2} \iff \begin{cases} x = \frac{1}{2}x + \frac{\sqrt{3}}{2}y - \frac{1}{2} \\ y = -\frac{1}{2}y + \frac{\sqrt{3}}{2}x + \frac{\sqrt{3}}{2} \end{cases} \iff \begin{cases} \frac{1}{2}x = +\frac{\sqrt{3}}{2}y - \frac{1}{2} \\ \frac{3}{2}y = \frac{\sqrt{3}}{2}x + \frac{\sqrt{3}}{2} \end{cases} \iff \begin{cases} x = \sqrt{3}y - 1 \\ 3y = \sqrt{3}x + \sqrt{3} \end{cases} \iff \begin{cases} x = \sqrt{3}y - 1 \\ \sqrt{3}y = x + 1 \end{cases} \Rightarrow x = x + 1 - 1.$$

Baccalauréat S A. P. M. E. P.

On a donc $x - y\sqrt{3} + 1 = 0$: c'est l'équation d'une droite.

b. On voit que g est la composée de f et de la translation T définie par

$$z \longmapsto z - \frac{1}{2} + i \frac{\sqrt{3}}{2}$$
.

 $g = T \circ f$ où T est la translation de vecteur \overrightarrow{t} d'affixe $-\frac{1}{2} + i \frac{\sqrt{3}}{2}$.

c. On a
$$(\overrightarrow{u}, \overrightarrow{t}) = \arg\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = \frac{2\pi}{3} + 2k\pi, k \in \mathbb{Z}.$$

 \overrightarrow{t} est donc normal à un vecteur directeur de (D_1) : T est la composée de la symétrie axiale S_{D_1} et de la symétrie axiale S_{D_2} où (D_2) est la parallèle à (D_1) contenant le point du cercle trigonométrique d'abscisse $\frac{1}{2}$. Donc :

$$g = T \circ f = (S_{D_2} \circ S_{D_1}) \circ S_{D_1} = S_{D_2} \circ (S_{D_1}) \circ S_{D_1} = S_{D_2}.$$

g est donc la réflexion d'axe (D_2) .

d. Si $A\left(\frac{1}{2}; \frac{\sqrt{3}}{2}\right)$ est le point de D_2 précédent son image par g est le point d'affixe

$$\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) \overline{\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)} - \frac{1}{2} + i\frac{\sqrt{3}}{2} = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) - \frac{1}{2} + i\frac{\sqrt{3}}{2} = \frac{1}{4} + \frac{3}{4} - \frac{1}{2} + i\frac{\sqrt{3}}{2} = \frac{1}{2} + i\frac{\sqrt{3}}{2}.$$

Le point A est donc invariant par g. La droite (D_2) est la droite contenant A parallèle à (D_1) , donc normale à \overrightarrow{t} .

PROBLÈME 11 points

$$f(x) = \frac{\mathrm{e}^x}{(1+x)^2}.$$

 \star I. Étude de la fonction f et tracé de (\mathscr{C})

1. a. On a $(1+x)^2 = 1 + x^2 + 2x = x^2 \left(\frac{1}{x^2} + 1 + \frac{2}{x}\right)$, donc pour $x \neq 0$:

$$f(x) = \frac{e^x}{x^2} \times \frac{1}{\frac{1}{x^2} + 1 + \frac{2}{x}}.$$

Or $\lim_{x \to +\infty} \frac{\mathrm{e}^x}{x^2} = +\infty$ et $\lim_{x \to +\infty} \frac{1}{\frac{1}{x^2} + 1 + \frac{2}{x}} = 1$, donc par produit de limites :

$$\lim_{x \to +\infty} f(x) = +\infty.$$

b. On a $\lim_{x \to -1} e^x = e^{-1}$ et $\lim_{x \to -1} (1+x)^2 = 0_+$, donc $\lim_{x \to -1} f(x) = +\infty$.

La droite dont une équation est x = -1 est asymptote à (\mathscr{C}) au voisinage de -1.

2. f quotient de fonctions dérivables le dénominateur étant non nul est dérivable sur]-1; $+\infty[$ et sur cet intervalle :

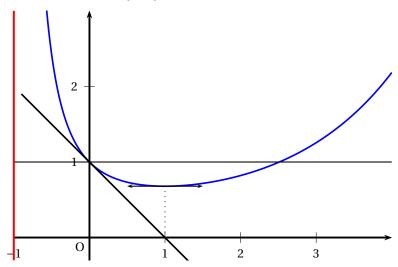
$$f'(x) = \frac{e^x (1+x)^2 - 2(1+x)e^x}{(1+x)^4} = \frac{(1+x)e^x [1+x-2)}{(1+x)^4} = \frac{(x-1)e^x}{(1+x)^3}.$$

Comme $e^x > 0$ quel que soit x et que $(1+x)^3 > 0$ pour x > -1, f'(x) est du signe de x - 1.

Baccalauréat S A. P. M. E. P.

- 3. D'après le résultat précédent :
 - $x-1>0 \iff x>1 \implies f'(x)>0$: la fonction est croissante sur [1; $+\infty$ [;
 - $x-1<0 \iff x<1 \implies f'(x)<0$: la fonction est décroissante sur] -1; 1[;
 - $x-1=0 \iff x=1:f$ a un minimum en 1, égal à f(1)=

$$y - f(0) = f'(0)(x - 0) \iff y - \frac{e^0}{1^2} = \frac{(0 - 1)e^0}{(1 + 0)^3}(x - 0) \iff y - 1 = -x \iff y = -x + 1.$$



4. Sur l'intervalle [1; 10], f est strictement croissante; elle définit une bijection de [1; 10] sur [f(1); f(10)]. Or $f(1) \approx 0.68 < 1$ et $f(10) \approx 182 > 1$, donc l'équation f(x) = 1 a une solution unique $\alpha \in [1; 10]$. D'après la courbe on peut dire que $2 < \alpha < 3$.

★ II. Calcul d'une aire

- 1. Soit

a.
$$g$$
 est dérivable sur [1; 2] et sur cet intervalle :
$$g'(x) = \frac{e^x(1+x) - e^x \times 1}{(1+x)^2} = \frac{e^x(1+x-1)}{(1+x)^2} = \frac{xe^x}{(1+x)^2}.$$

Tous les termes étant positifs pour x > 1, on a donc g'(x) > 0 sur [1; 2]: la fonction est strictement croissante de $g(1) = \frac{e}{2} \approx 1,359$ à $\frac{e^2}{4} \approx 2,464$.

- **b.** D'après le résultat précédent on a *a fortiori* : 1 < g(x) < 2,5
- **c.** $1 < g(x) < 2.5 \implies \int_{1}^{2} 1 \, dx < \int_{1}^{2} g(x) \, dx < \int_{1}^{2} 2.5 \, dx \iff 2 1 < A_{2} < 2.5(2 1) \iff$ $1 < A_1 < 2,5$ en unité d'aire.
- **2.** Sur l'intervalle [1; 2], la fonction f est positive donc :

$$A_2 = \int_1^2 f(x) dx = \int_1^2 \frac{e^x}{(1+x)^2} dx.$$

En posant $u(x) = e^x$ et $v'(x) = \frac{1}{(1+x)^2}$, on a:

$$u'(x) = e^x \text{ et } v(x) = -\frac{1}{1+x}.$$

Toutes ces fonctions sont continues car dérivables sur [1; 2], on peut donc intégrer par parties :

$$A_2 = \left[-e^x \times \frac{1}{1+x} \right]_1^2 + \int_1^2 \frac{e^x}{1+x} dx = \frac{e}{2} - \frac{e^2}{3} + A_1.$$

Baccalauréat S A. P. M. E. P.

De l'encadrement précédent de A₁, on déduit :

$$1 < A_1 < 2,5 \implies 1 + \frac{e}{2} - \frac{e^2}{3} < A_1 < 2,5 + \frac{e}{2} - \frac{e^2}{3}$$
, soit à peu près :
-0.1 < A₂ < 1.4 en unité d'aire.

Cette aire est positive donc en fait $0 < A_2 < 1,4$ en unité d'aire.

* III. Approximation d'un nombre à l'aide d'une suite

Pour cette partie, on utilisera sans justification le fait que l'équation f(x) = x a une unique solution β et que celle-ci est élément de l'intervalle $\left[\frac{1}{2}; 1\right]$.

Soit *h* la fonction définie sur]-1; $+\infty[$ par $h(x) = \frac{e^x}{(1+x)^3}$.

1. **a.**
$$f(x) - 2h(x) = \frac{e^x}{(1+x)^2} - 2\frac{e^x}{(1+x)^3} = \frac{e^x(1+x-2)}{(1+x)^3} = \frac{e^x(x-1)}{(1+x)^3} = f'(x).$$

b. La fonction
$$h$$
 est dérivable sur $]-1$; $+\infty[$ et sur cet interv $h'(x) = \frac{e^x(1+x)^3 - 3e^x(1+x)^2}{(1+x)^6} = \frac{e^x(1+x-3)}{(1+x)^4} = \frac{e^x(x-2)}{(1+x)^4}.$

c. Les fonctions
$$f'(x)$$
 et $f(x) - 2h(x)$ étant égales leurs dérivées le sont aussi, d'où :
$$f''(x) = f'(x) - 2h'(x) = \frac{e^x(x-1)}{(x+1)^3} - 2\frac{e^x(x-2)}{(1+x)^4} =$$

Or $x^2 - 2x + 3 = (x - 1)^2 - 1 + 3 = (x - 1)^2 + 2 \ge 2 > 0$ (car somme de deux carrés). On a donc clairement f''(x) > 0 sur]-1; $+\infty[$ donc sur $\left[\frac{1}{2}; 1\right]$.

Conclusion f' est strictement croissante sur $\left\lfloor \frac{1}{2} ; 1 \right\rfloor$.

- **d.** f' croit donc de $f\left(\frac{1}{2}\right) = -\frac{4\sqrt{e}}{27} \approx -0.25$ à f(1) = 0. Donc f' est négative sur l'intervalle $\left[\frac{1}{2}; 1\right]$ et $|f'(x)| \leqslant \frac{1}{4} = 0.25.$
 - 2. (Question hors-programme en 2002).
 - **a.** Comme $f(\beta) = \beta$ on a pour tout naturel n, $|U_{n+1} \beta| = |f(U_n) f(\beta)|$ Comme U_n et β appartiennent à l'intervalle $\left[\frac{1}{2}; 1\right]$, en appliquant l'inégalité des accrois-

sements finis:
$$|U_{n+1} - \beta| \leq \frac{1}{4} |U_n - \beta|.$$

b. • Initialisation

$$|U_0 - \beta| = |1 - \beta| \le 1$$
 et $\left(\frac{1}{4}\right)^0 = 1$: l'inégalité est vraie au rang 0.

Hérédité

Supposons que pour $n \in \mathbb{N}$, on ait $|U_n - \beta| \le \left(\frac{1}{4}\right)^n$.

Or
$$|U_{n+1} - \beta| \leqslant \frac{1}{4} |U_n - \beta|$$
; donc

$$|U_{n+1}-\beta| \leqslant \frac{1}{4} \left(\frac{1}{4}\right)^n$$
 et finalement :

$$|U_{n+1} - \beta| \le \left(\frac{1}{4}\right)^{n+1}$$
: l'inégalité est vraie au rang $n+1$.

Conclusion : l'inégalité est vraie au rang 0 et si elle est vraie au rang n elle est encore vraie au rang n+1; d'après le principe de récurrence quel que soit le naturel n, $\left|U_n-\beta\right| \leqslant \left(\frac{1}{4}\right)^n$. Baccalauréat S A. P. M. E. P.

- **c.** Une valeur approchée numérique de β à 10^{-3} près est U_n lorsque $\left(\frac{1}{4}\right)^n \leqslant 10^{-3}$ soit par croissance du logarithme népérien :

$$n\ln\frac{1}{4} \leqslant -3\ln 10 \iff n \geqslant \frac{-3\ln 10}{\ln\frac{1}{4}} \quad \operatorname{car} \ln\frac{1}{4} < 0.$$

Finalement la calculatrice donne $n \ge 4,98$.

Conclusion $U_5 \approx 0,69714 \approx 0,697$ est une valeur approchée de β à 10^{-3} près.