\sim Corrigé du BTS Métropole 15 mai 2023 \sim Groupement B1 1

L'usage de calculatrice avec mode examen actif est autorisé L'usage de calculatrice sans mémoire « type collège » est autorisé

Exercice 1 10 points

Partie A - Résolution d'une équation différentielle

1. **a.** Résolvons $r^2 + 5r + 4 = 0$.

$$\Delta = 5^2 - 4 \times 1 \times 4 = 25 - 16 = 9$$

Les solutions sont :

$$r_1 = \frac{-5 - \sqrt{9}}{2 \times 1} = -4$$
 et $r_2 = \frac{-5 + \sqrt{9}}{2 \times 1} = -1$.

b. Les solutions de l'équation différentielle (E_0) sont de la forme :

$$C_1 e^{-t} + C_2 e^{-4t}$$
 où $C_1, C_2 \in \mathbb{R}$

- **2. a.** On a f(0) = 20 et f'(0) = -10.
 - **b.** La valeur exacte de la distance *OM* deux secondes après le début de la fermeture est :

$$f(2) = \frac{70}{3}e^{-2} - \frac{10}{3}e^{-8}$$

Attention, on demande dans cette question une valeur exacte, et non une valeur approchée.

c) Demandons-nous quelle est la distance *OM* au bout de quatre secondes :

$$f(4) = \frac{70}{3}e^{-4} - \frac{10}{3}e^{-16} \approx 0,43 \text{ cm}.$$

Cette distance est inférieure à 0,5 cm, on peut donc considérer que le tiroir est fermé.

Partie B - Étude de fonction

1. **a.** Le rappel nous permet d'affirmer que $\lim_{t\to +\infty} e^{-t} = 0$ et $\lim_{t\to +\infty} e^{-4t} = 0$. On en déduit que

$$\lim_{t \to +\infty} f(t) = \frac{70}{3} \times 0 - \frac{10}{3} \times 0 = 0$$

^{1.} Aéronautique, Assistance technique d'ingénieur, Bâtiment, Conception et réalisation de carrosseries, Conception et réalisation des systèmes automatiques, Enveloppe des bâtiments : conception et réalisation, Environnement nucléaire, Fluides - énergies - domotique (3 options), Maintenance des systèmes (3 options), Traitement des matériaux (2 options), Travaux publics

- **b.** La courbe possède ainsi une asymptote d'équation y = 0.
- **2. a.** e^{-t} et e^{-4t} se dérivent respectivement en $-e^{-t}$ et $-4e^{-4t}$. Ainsi :

$$f'(t) = \frac{70}{3} \times \left(-e^{-t}/right \right) - \frac{10}{3} \times \left(-4e^{-4t} \right)$$
$$f'(t) = -\frac{70}{3}e^{-t} + \frac{40}{3}e^{-4t}$$

b. L'énoncé nous indique que la dérivée de f est négative sur $[0; +\infty[$.

x	0 +∞
f'(t)	_
f	200

Groupement B1 2 15 mai 2023

3.	a. I	l est nécessaire	de compléter	jusqu'à la ligne 39.
----	-------------	------------------	--------------	----------------------

Ligne	t	f(t)	Condition f(t)>s
Ligne 36	3,6	0,64	Vraie
Ligne 37	3,7	0,58	Vraie
Ligne 38	3,8	0,52	Vraie
Ligne 39	3,9	0,47	Fausse

- **b.** À la fin de l'exécution de l'algorithme, la variable *t* a pour valeur 3,9. Cela signifie que le tiroir est considéré comme fermé à partir de 3,9 secondes.
- **4.** Pour calculer $\int_0^4 f(t)$, il nous faut déterminer une primitive de f.
 - e^{-t} se primitive en $-e^{-t}$
 - e^{-4t} se primitive en $-\frac{1}{4}e^{-4t}$

On en déduit l'expression d'une primitive F de f:

$$f(t) = \frac{70}{3} e^{-t} - \frac{10}{3} e^{-4t}$$

$$F(t) = \frac{70}{3} \times (-e^{-t}) - \frac{10}{3} \times \left(-\frac{1}{4} e^{-4t}\right)$$

$$F(t) = -\frac{70}{3} e^{-t} + \frac{5}{6} e^{-4t}$$

L'intégrale $\int_0^4 f(t)$ vaut F(4) - F(0). Or :

•
$$F(4) = -\frac{70}{3}e^{-4} + \frac{5}{6}e^{-16}$$

•
$$F(0) = -\frac{70}{3} \times 1 + \frac{5}{6} \times 1 = -\frac{140}{6} + \frac{5}{6} = -\frac{135}{6} = -\frac{45}{2}$$

On en déduit que :

$$\int_0^4 f(t) = -\frac{70}{3}e^{-4} + \frac{5}{6}e^{-16} + \frac{45}{2}$$

Puis que:

$$m = \frac{1}{4} \int_0^4 f(t) = \frac{1}{4} \left(-\frac{70}{3} e^{-4} + \frac{5}{6} e^{-16} + \frac{45}{2} \right)$$

En appliquant la règle de distributivité, on a :

$$m = -\frac{70}{12}e^{-4} + \frac{5}{24}e^{-16} + \frac{45}{8}$$

Après simplification de la fraction $\frac{70}{12}$, on obtient le résultat attendu :

$$m = -\frac{35}{6}e^{-4} + \frac{5}{24}e^{-16} + \frac{45}{8}$$
.

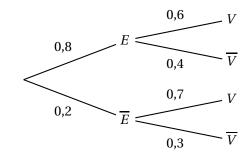
Exercice 2 10 points

Les trois parties peuvent être traitées de façon indépendante

On s'intéresse à un magasin de vélos.

Partie A. Probabilités conditionnelles

- 1. Recopier et compléter l'arbre pondéré ci-contre décrivant la situation.
- **2.** On a $p(E \cap V) = p(V) \times p_E(V) = 0.8 \times 0.6 = 0.48$.
- **3.** On a de même $p\left(\overline{E} \cap V\right) = p\left(\overline{E}\right) \times p_{\overline{E}}(V) = 0,2 \times 0,7 = 0,14.$ D'après la formule des probabilités totales: $p(V) = p(E \cap V) + p\left(\overline{E} \cap V\right) = 0,48 + 0,14 = 0,62.$



4. Il faut trouver $p_V(E) = \frac{p(V \cap E)}{p(V)} = \frac{p(E \cap V)}{p(V)} \frac{0.48}{0.62} \approx 0.7741$, soit 0.774 au millième près.

Partie B. Loi binomiale

- 1. La variaBle aléatoire X suit une loi binomiale de paramètres n=80 et p=0,62.
- **2.** On a $p(X = 40 = {80 \choose 40}0, 62^{40} \times (1 0, 62)^{80 40} = {80 \choose 40}0, 62^{40} \times 0, 38^{40} \approx 0,008$ au millième près.
- **3.** On a $p(X \ge 41) = 1 p(X < 40) \approx 0,981$ au au millième près.

Partie C. Intervalle de confiance

- 1. L'estimation ponctuelle f est égale à $\frac{54}{90} = \frac{6}{10} = 0.6$
- **2. a.** L'intervalle de confiance est : $I = \left[0,6-1,96\sqrt{\frac{0,6(1-0,6)}{90}}; 0,6+1,96\sqrt{\frac{f(1-0,6)}{90}}\right]$ soit environ I = [0,4987; 0,7012]. Au millième près I = [0,498; 0,702].
 - **b.** La réponse est non car il y a un risque égal à 5 %