∽ Corrigé du baccalauréat S La Réunion juin 2004 ∾

EXERCICE 1 4 points

A - Lecture graphique

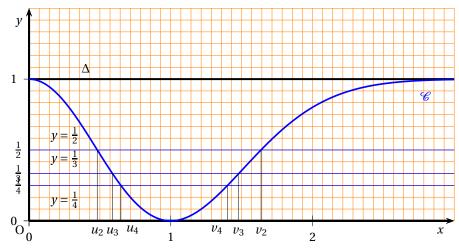
- 1. On lit graphiquement:
 - Si k < 0, l'équation n'a pas de solution;
 - Si k = 0, l'équation a une solution (1);
 - Si 0 < k < 1, l'équation a deux solutions;
 - Si k = 1, l'équation a une solution (0);
 - Si k > 1, l'équation n'a pas de solution.
- **2.** Pour n > 1, $0 < \frac{1}{n} < 1$. D'après la question précédente, l'équation $f(x) = k = \frac{1}{n}$ a alors deux solutions distinctes.

B - Définition et étude de deux suites

- 1. D'après le tableau de variations :
 - Sur l'intervalle [0; 1] la fonction f est continue et décroissante de f(0) = 1 à f(1) = 0. Or $n > 1 \Rightarrow 0 < \frac{1}{n} < 1$ soit $f(1) < \frac{1}{n} < f(0)$.

- Il existe donc un réel unique u_n de [0; 1] tel que $f(u_n) = \frac{1}{n}$.

 Même raisonnement sur l'intervalle [1; $+\infty$ [avec f croissante de 0 à 1. Il existe un réel unique v_n de [1; $+\infty$ [tel que $f(v_n) = \frac{1}{n}$].
- **2.** Construction de u_2 , u_3 , u_4 , v_2 , v_3 , v_4 .



EXERCICE 2 (Obligatoire)

5 points

$$z' = \frac{iz + 2}{z - i}$$

- 1. **a.** Image de B: $z_{B'} = \frac{i-1+2}{1+i-i} = 1+i = z_B$: B est invariant par f;

 Image de C: $z_{C'} = \frac{i(-1+i)+2}{-1+i-i} = -1+i = z_C$: C est invariant par f.
 - **b.** Soit M d'affixe différente de i et M' son image par f, alors :

$$z' - i = \frac{iz + 2}{z - i} - i = \frac{iz + 2 - iz - 1}{z - i} \frac{1}{z - i}, \text{ d'où } (z' - i)(z - i) = 1.$$

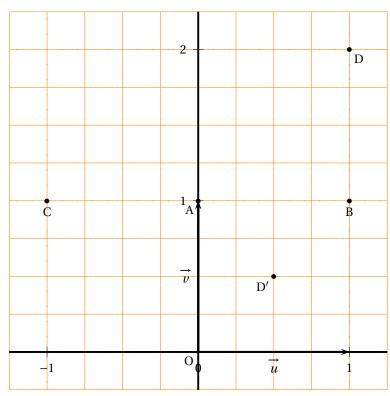
c. Soit D' l'image de D par f. On déduit de la question précédente que $(z_{D'}-i)(1+i=1)$, ce qui signifie :

- en module que AD' × OB = 1, soit AD' =
$$\frac{1}{OB} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$
;

— en argument que
$$\arg(\overrightarrow{u}, \overrightarrow{AD'}) + \arg(\overrightarrow{u}, \overrightarrow{AD}) = 0$$
 [2 π] soit

$$\operatorname{arg}(\overrightarrow{u}, \overrightarrow{AD'}) = -\frac{\pi}{4}$$
, soit puisque $\overrightarrow{u} = \overrightarrow{AB}$, $(\overrightarrow{AB}, \overrightarrow{AD'}) = -\frac{\pi}{4}$.

On peut donc construire le symétrique de D autour de (AB), puis l'image de ce point dans l'homothétie de centre A et de rapport $\frac{1}{2}$. D'où la figure :



2. Soit un point M d'affixe z du cercle de centre A et de rayon R > 0, alors

$$AM = R$$
; or d'après la question 1. c., $AM' \times AM = 1 \iff AM' = \frac{1}{AM} = \frac{1}{R}$, ce qui signifie que

l'image de M appartient au cercle centré en A et de rayon $\frac{1}{n}$

Un point M du cercle a une affixe de la forme $z = i + Re^{i\alpha}$, avec $0 \le \alpha < 2\pi$ et on a vu à la question précédente que son image a un argument égal à $-\alpha$, donc $0 \le -\alpha < 2\pi$.

Conclusion : l'image d'un cercle centré en A et de rayon R est le cercle centré en A et de rayon

3. a. Si $z = \alpha i$, $\alpha \ne 1$, alors $z' = \frac{-\alpha + 2}{\alpha i - i} = \frac{i(2 - \alpha)}{1 - \alpha} = \beta i$. Donc z' est un imaginaire pur. Donc l'image de l'axe imaginaire (privé de A) est inclus dans l'axe imaginaire pur.

Inversement si $z' = \alpha i$, $\alpha \neq 1$, alors $z' = \alpha i \iff z = \frac{2 - \alpha}{1 - \alpha} i$.

Tout point de l'axe imaginaire différent de A a un antécédent sur cet axe imaginaire et différent de A.

Conclusion : l'image de l'axe imaginaire privé de A est l'axe imaginaire privé de A

b. Soit M un point de \mathcal{D} ; si son abscisse est $\alpha (\alpha \neq 0)$, son affixe est $z = \alpha + i$.

La relation trouvée au 1. b. s'écrit ici $(z'-i)(\alpha)=1 \iff z'=\frac{1}{\alpha}+i$ qui montre que M'

appartient à la droite \mathcal{D} privée de A puisque $\frac{1}{\alpha} \neq 0$.

De façon symétrique tout point M' de \mathscr{D} a pour affixe : $z' = \alpha + i$. Toujours d'après la relation 1. b. on en déduit que $z = \frac{1}{\alpha} + i$ qui est un point de \mathscr{D} .

Conclusion : la droite $\mathcal D$ privée de A a pour image par f , la droite $\mathcal D$ privée de A.

EXERCICE 2 (spécialité)

5 points

- **1.** Soit *p* un entier premier impair.
 - **a.** D'après le petit théorème de Fermat, comme p impair est premier avec 2, on sait que $2^{p-1} 1$ est divisible par p ou encore $2^{p-1} 1 = \alpha p$, avec $\alpha \in \mathbb{N}$, soit $2^{p-1} \equiv 1$ [p].
 - **b.** Inversement soit $k \neq 0$ tel que $2^k \equiv 1$ [p](1).

Si k divise n, il existe $\alpha \in \mathbb{N}$ tel que $n = \alpha k$.

 $(1) \Rightarrow (2^k)^{\alpha} \equiv 1^{\alpha}$ [p](1) ou $2^{k\alpha} \equiv 1$ [p] et finalement :

$$2^n \equiv 1$$
 [p]

c. Soit b tel que $2^b \equiv 1$ [p], b étant le plus petit entier différent de zéro vérifiant cette propriété.

La division euclidienne de n par b montre l'existence des entiers α et β tels que $n = \alpha b + \beta$, avec $\beta < b$.

Si $2^n \equiv 1$ [p], alors $2^{\alpha b + \beta} \equiv 1$ [p] $\iff 2^{\alpha b} \times 2^{\beta} \equiv 1$ [p].

Or $2^b \equiv 1$ $[p] \Rightarrow 2^{\alpha b} \equiv 1$ [p], donc $2^\beta \equiv 1$ [p], ce qui contredit l'hypothèse relative à b. Donc $\beta = 0$ et par conséquent n est multiple de b ou encore b non nul divise n.

- **2.** Soit *q* premier impair, $A = 2^q 1$ et *p* un diviseur premier de *A*.
 - **a.** Puisque *A* est un multiple de *p*, on a $2^q 1 \equiv 0$ $[p] \iff 2^q \equiv 1$ [p].
 - **b.** p ne peut être pair, puisque le seul pair premier est 2 et A impair n'est pas multiple de 2.
 - **c.** Soit *b* le plus petit entier tel que $2^b \equiv 1$ [*p*] et *q* vérifie aussi $2^q \equiv 1$ [*p*]. D'après le résultat de 1. c. on sait alors que *b* divise *q*; mais *q* premier impair n'a pour diviseur que 1 et *q*:
 - si b = 1 on aurait $2^1 \equiv 1$ [p] ce qui est faux car p est au moins égal à 3;
 - donc b = q
 - **d.** p, premier impair est premier avec 2, donc le petit théorème de Fermat permet d'écrire : $2^{p-1} 1 \equiv 0 \quad [p] \iff 2^{p-1} \equiv 1 \quad [p].$

q étant le plus petit entier tel que $2^q \equiv 1$ [p], on en déduit que $q \leqslant p-1$ et d'après le résultat de la question 1. c., q divise p-1.

Or p impair implique que p-1 est pair : il existe $\alpha \in \mathbb{N}$ tel que $p-1=2\alpha$.

Donc q divise 2α et d'après le théorème de Gauss comme q est impair donc premier avec 2, il divise α . Il existe donc $k \in \mathbb{N}$ tel que $\alpha = kq$.

On a donc $p-1=2kq=2(kq)\iff p-1\equiv 0$ [2q] soit finalement $p\equiv 1$ [2q].

3. On a $A_1 = 2^{17} - 1$

D'après le résultat précédent 17 étant un impair premier, tout facteur premier p de A_1 vérifie $p \equiv 1 \quad [2 \times 17] \iff p \equiv 1 \quad [34] \iff p = 34\alpha + 1$, avec $\alpha \in \mathbb{N}$.

Les entiers 103, 137, 239 et 307 sont les entiers premiers inférieurs à 400 de la forme $34\alpha + 1$; aucun d'eux ne divise A_1 et comme $400^2 > A_1$, on en déduit que A_1 est premier.

EXERCICE 3 5 points

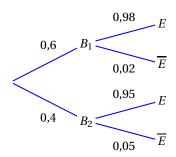
Partie A

1. Les tirages étant avec remise, on a ici une loi binomiale de paramètres n = 10 et $p = \frac{120}{6000}$. On sait que la probabilité d'avoir exactement 3 adresses inexactes sur 10 tirages est :

$$\binom{10}{3} \left(\frac{120}{6000}\right)^3 \left(1 - \frac{120}{6000}\right)^7$$

Réponse c.

2. Avec des notations évidentes :



Comme $p(E) \neq 0$, on a:

$$p_{E}(B_{1}) = \frac{p(B_{1} \cap E)}{p(E)} = \frac{p(B_{1} \cap E)}{p(B_{1}) \times p_{B_{1}}(E) + p(B_{2}) \times p_{B_{2}}(E)} = \frac{0.6 \times 0.98}{0.6 \times 0.98 + 0.4 \times 0.95}.$$
Réponse d

Partie B

1. La probabilité cherchée est : $1-p([0\,;\,2\,500])=1-\int_0^{2\,500}0,000\,5\mathrm{e}^{-0,000\,5\times x}\mathrm{d}x=1-\left[-\mathrm{e}^{-0,000\,5\times x}\right]_0^{2\,500}=1-\mathrm{e}^{-0,000\,5\times 2\,500}-1=\mathrm{e}^{-1,25}=\mathrm{e}^{-\frac{5}{4}}.$ Réponse a.

2. • Toutes les fonctions étant continues et leurs dérivées continues, on peut intégrer par parties :

$$u = x dv = \lambda e^{-\lambda x} du = 1 v = -e^{-\lambda x}$$

$$Donc \int_0^t \lambda x e^{-\lambda x} dx = \left[-x e^{-\lambda x} \right]_0^t + \int_0^t e^{-\lambda x} dx = \left[-x e^{-\lambda x} - \frac{1}{\lambda} e^{-\lambda x} \right]_0^t = -t e^{-\lambda t} + \frac{1 - e^{-\lambda t}}{\lambda}.$$
Réponse b.

· Limite de l'intégrale précédente.

Comme $\lambda > 0$, on a: $-\lim_{t \to +\infty} t e^{-\lambda t} = 0;$ $-\lim_{t \to +\infty} \frac{1 - e^{-\lambda t}}{\lambda} = \frac{1}{\lambda} = 2000.$ Réponse b.

EXERCICE 4 6 points

1. a. On a $[f(x)]^2 \ge 0 \Rightarrow 1 + [f(x)]^2 \ge 1 \Rightarrow [f'(x)]^2 > 0$. Conclusion : quel que soit x, $f'(x) \ne 0$.

b. La première relation appliquée à x = 0 donne $[f(0)]^2 = 1 - 1 = 0 \Rightarrow f(0) = 0$.

2. En dérivant la relation (1): $2f'(x)f''(x) - 2f(x)f'(x) = 0 \iff (\operatorname{car} f'(x) \neq 0)f''(x) - f(x) = 0 \quad (4) \text{ quel que soit } x \in \mathbb{R}.$

3. u = f + f' et v = f' - f.

a.
$$u(0) = f(0) + f'(0) = 0 + 1 = 1$$

 $v(0) = f'(0) - f(0) = 1 - 0 = 1.$

- **b.** f' étant dérivable, u et v le sont aussi : u' = f'' + f' = f + f' = u et v' = f'' - f' = f - f' = -v.
- **c.** On en déduit que $u=K_1\mathrm{e}^x$ et que $v=K_2\mathrm{e}^{-x}$ quel que soit $x\in\mathbb{R}$.
- **d.** On a $u v = f' + f f' (-f) = 2f \Rightarrow f = \frac{u v}{2}$. Quel que soit $x \in \mathbb{R}$, $f(x) = \frac{e^x - e^{-x}}{2}$.
- **4. a.** Comme $\lim_{x \to +\infty} e^{-x} = 0$ et $\lim_{x \to +\infty} e^x = +\infty$, $\lim_{x \to +\infty} f(x) = +\infty$. Inversement comme $\lim_{x \to -\infty} e^x = 0$ et $\lim_{x \to -\infty} e^{-x} = +\infty$, $\lim_{x \to -\infty} f(x) = -\infty$. **b.** f somme de fonctions dérivables est dérivable sur $\mathbb R$ et
 - $f'(x) = \frac{e^x + e^{-x}}{2} > 0$ car $e^u > 0$ quel que soit u. La fonction f est donc croissante sur \mathbb{R} .

х	$-\infty$ $+\infty$
f'(x)	+
f	-∞ +∞

- **5.** a. D'après le tableau de variations précédent, la fonction f étant continue sur \mathbb{R} et croissante sur \mathbb{R} , l'équation f(x) = m, $m \in \mathbb{R}$ a une solution unique α .
 - **b.** Application : résolution de l'équation f(x) = 3.

Application: résolution de l'équation
$$f(x) = 3$$
.

On a $f(x) = 3 \iff \frac{e^x - e^{-x}}{2} = 3 \iff e^x - e^{-x} = 6 \iff e^x - \frac{1}{e^x} - 6 = 0 \iff [e^x]^2 - 6e^x - 1 = 0 \iff (e^x - 3)^2 - 9 - 1 = 0 \iff (e^x - 3)^2 - 10 = 0 \iff (e^x - 3 + \sqrt{10})(e^x - 3 - \sqrt{10}) = 0 \iff e^x - 3 + \sqrt{10} = 0 \iff e^x - 3 + \sqrt{10} = 0 \iff e^x = 3 + \sqrt{10}$

$$\begin{cases} e^x = 3 + \sqrt{10} = 0 \\ e^x = 3 - \sqrt{10} \end{cases}$$

La deuxième équation n'a pas de solution dans \mathbb{R} car $3 - \sqrt{10} < 0$.

La première implique en appliquant la fonction logarithme népérien : $x = \ln(3 + \sqrt{10})$.

Une calculatrice donne : $\alpha \approx 1,82$ à 10^{-2} près.