ం Corrigé du baccalauréat S La Réunion 23 juin 2009 ని

EXERCICE 1 4 points

Le plan complexe est rapporté à un repère orthonormal direct $(0, \overrightarrow{u}, \overrightarrow{v})$.

1. Soit (E) l'ensemble des points M d'affixe z vérifiant : $z=1-2\mathrm{i}+\mathrm{e}^{\mathrm{i}\theta}$, θ étant un nombre réel.

 $z = 1 - 2i + e^{i\theta}$, $\Rightarrow |z - (1 - 2i)| = |e^{i\theta}| \text{ soit } |z - (1 - 2i)| = 1$.

Conclusion : les points M d'affixe z sont à la distance 1 du point d'affixe 1-2i. Comme $\theta \in \mathbb{R}$, la réponse est **c.**

2. Soit f l'application du plan qui, à tout point M d'affixe z associe le point M' d'affixe z' tel que z' = -iz - 2i.

Un point M d'affixe z est invariant par f si et seulement si : $z = -iz - 2i \iff -2i$

$$z(1+i) = -2i \iff z = \frac{-2i}{1+i} = -1 - i.$$

Il y a donc un point invariant par f.

 $\left\{ \begin{array}{lll} z' & = & -\mathrm{i}z-2\mathrm{i} \\ -1-\mathrm{i} & = & -\mathrm{i}(-1-\mathrm{i})-2\mathrm{i} \end{array} \right. \text{ entraı̂ne par différence} :$

z'-(-1-i)=-i[z-(-1-i)]. f est donc la rotation de centre le point d'affixe -1-i et d'angle $-\frac{\pi}{2}$. Réponse **d.**

- 3. Soit (F) l'ensemble des points M d'affixe z vérifiant $|z-1+\mathrm{i}|=|z+1+2\mathrm{i}|$. Soient les points A, B et C d'affixes respectives $1-\mathrm{i}$, $-1+2\mathrm{i}$ et $-1-2\mathrm{i}$. $|z-1+\mathrm{i}|=|z+1+2\mathrm{i}|$ peut s'écrire $|z-(1-\mathrm{i})|=|z-(1-2\mathrm{i})|$ qui montre que M est équidistant des deux points A et C; donc M appartient à la médiatrice de [AC]. Réponse \mathbf{c} .
- **4.** On considère dans l'ensemble des nombres complexes l'équation $z + |z|^2 = 7 + i$. En posant z = x + iy, l'équation proposée s'écrit : $x + iy + x^2 + y^2 = 7 + i$, soit en identifiant parties réelles et parties imaginaires :

$$\begin{cases} x + x^2 + y^2 &= 7 \\ y &= 1 \end{cases}$$

La partie imaginaire de(s) la solution(s) est égale à 1.

La première équation s'écrit:

 $x + x^2 + y^2 = 7 \iff x^2 + 1 + x = 7 \iff x^2 + x - 6 = 0 \iff (x - 2)(x + 3) = 0 \iff x = 2 \text{ ou } x = -3.$

Vérification : avec $z_1 = 2 + i$, 2 + i + 4 + 1 = 7 + i : ce nombre est solution.

Avec $z_1 = -3 + i$, -3 + i + 9 + 1 = 7 + i: ce nombre est solution. Réponse **a.**

EXERCICE 2 6 points

Partie A

- 1. La fonction semble être croissante sur [0; 1], puis décroissante sur $[1; +\infty[$. La limite en $+\infty$ semble être nulle.
- **2.** f produit de fonctions dérivables sur $[0; +\infty[$ est dérivable sur cet intervalle et $f'(x) = e^{-x} xe^{-x} = e^{-x}(1-x)$.

Comme $e^{-x} > 0$, quel que soit x, le signe de f'(x) est donc celui de 1 - x.

On a donc f'(1) = 0, f'(x) > 0 si $x \in]0$; 1[, f'(x) < 0 six > 1.

D'autre part $f(x) = \frac{x}{e^x}$. On sait que $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$, donc $\lim_{x \to +\infty} f(x) = 0$.

- 3. Voir l'annexe
- **4.** \mathscr{C}_f semble être au dessus de \mathscr{C}_g sur]0; 1[, puis au dessous sur]1; $+\infty$ [. Démonstration : considérons la fonction d définie sur [0; $+\infty$ [par $d(x) = x\mathrm{e}^{-x} x^2\mathrm{e}^{-x} = x\mathrm{e}^{-x}(1-x)$. Comme $x \ge 0$ et $\mathrm{e}^{-x} > 0$, le signe de d est celui de 1-x.

Conclusion : d(x) > 0 si 0 < x < 1, c'est-à-dire f(x) > g(x); d(x) < 0 si x > 1, c'est-à-dire f(x) < g(x).

Partie B

1. Voir l'annexe

2.
$$I = \int_0^1 f(x) dx = \int_0^1 x e^{-x} dx.$$

On fait une intégration par parties en posant :

$$\begin{cases} u(x) = x \\ dv(x) = e^{-x} \end{cases} \begin{cases} du(x) = 1 \\ v(x) = -e^{-x} \end{cases}$$

Toutes ces fonctions étant continues, on a donc :

$$I = [-xe^{-x}]_0^1 - \int_0^1 -e^{-x} dx = [-xe^{-x}]_0^1 - [e^{-x}]_0^1 = [-e^{-x}(x+1)]_0^1 = -2e^{-1} + 1 = 1 - \frac{2}{e}.$$

3. a. *H* produit de fonctions dérivables sur $[0; +\infty[$ est dérivable sur cet intervalle et :

$$H'(x) = (-2x-2)e^{-x} + (x^2+2x)e^{-x} = e^{-x}(x^2+2x-2x-2) = e^{-x}(x^2-2).$$

b. On peut écrire $H'(x) = x^2 e^{-x} - 2e^{-x} = g(x) - 2e^{-x}$ ou encore $g(x) = H'(x) + 2e^{-x}$.

Une primitive de H'(x) est H(x), une primitive de $2e^{-x}$ est $-2e^{-x}$, donc par linéarité une primitive de g est

$$G(x) = -(x^2 + 2x)e^{-x} - 2e^{-x} = -e^{-x}(x^2 + 2x + 2).$$

4. On a vu que sur]0; 1[\mathscr{C}_f est au dessus de \mathscr{C}_g . L'aire \mathscr{A} est donc l'intégrale de la fonction positive d sur [0; 1].

$$\mathcal{A} = \int_0^1 (f(x) - g(x)) dx = \int_0^1 f(x) dx - \int_0^1 g(x) dx \text{ (par linéarité de l'intégrale)}.$$

$$\operatorname{Or} \int_0^1 f(x) dx = I = 1 - \frac{2}{e};$$

$$\int_0^1 g(x) dx = G(1) - G(0) = -\frac{5}{e} + 2.$$

$$\operatorname{Donc} \mathcal{A} = 1 - \frac{2}{e} + \frac{5}{e} - 2 = \frac{3}{e} - 1.$$

Remarque : $\mathcal{A} = \frac{3}{e} - 1 \approx 0,1$ ce qui correspond à peu près à ce que l'on lit sur la figure.

EXERCICE 3 5 points

- **1. a.** Comme *A* et *B* sont indépendants, $p(C) = p(A \cap B) = p(A) \times p(B)$ $p(C) = 0.02 \times 0.01 = 0.0002$
 - **b.** On a $p(D) = p(A \cup B) = p(A) + p(B) p(A \cap B) = 0.02 + 0.01 0.0002 = 0.0298.$
 - **c.** On a $E = \overline{D}$ d'où p(E) = 1 p(D) = 1 0.0298 = 0.9702.
 - **d.** On a $p_A(B) = \frac{p(A \cap B)}{p(A)} = \frac{0,0002}{0,02} = 0,01$. (en fait $\frac{p(A \cap B)}{p(A)} = \frac{p(A) \times p(B)}{p(A)} = \frac{p(A)}{p(A)} = \frac{p(A$

La Réunion 2 23 juin 2009

2. a. On a manifestement une épreuve de Bernoulli avec deux issues (sac sans défaut, sac défectueux).

La variable aléatoire *X* suit donc une loi binomiale de paramètres n = 100 et p = 0.03.

b. On sait que la probabilité que k, $0 \le k \le 100$ sacs soient défectueux est :

$$p(X = k) = {100 \choose k} 0.03^{k} (1 - 0.03)^{100 - k}$$

L'évènement contraire de l'évènement « au moins un sac est défectueux » est « il n'y a pas de sac défectueux qui a une probabilité de

$$\binom{100}{0}0,03^0 \times 0,97^{100} = 0,97^{100} \approx 0,0476.$$

La probabilité d'avoir au moins un sac défectueux est donc égale à $1 - 0.97^{100} \approx 0.952 \approx 0.95$ (au centième près).

Interprétation: pour 100 sacs prélevés il y a à peu près 95 chances sur 100 d'avoir au moins un sac défectueux.

c. Pour cette loi binomiale on a $E = n \times p = 100 \times 0.03 = 3$. Interprétation: sur 100 sacs prélevés il y a en moyenne 3 sacs défectueux.

EXERCICE 4

1. \overrightarrow{BC} (-1; 1; 0) est un vecteur normal au plan (P); celui-ci a donc une équation de la forme -x + y + d = 0.

Comme A ∈ (P) les coordonnées de A vérifient l'équation ci-dessus, soit $-1 + 2 + d = 0 \iff d = -1.$

Conclusion $M(x; y; z) \in (P) \iff -x + y - = 0 \iff x - y + 1 = 0$.

On admet que le plan (Q) a pour équation cartésienne -y+z+2=0 et que le plan (R) a pour équation cartésienne -x + z + 1 = 0.

2. a. $\begin{cases} x-y+1 &= 0 \\ -y+z+2 &= 0 \\ -x+z+1 &= 0 \end{cases} \iff \begin{cases} x-y+1 &= 0 \\ -y+z+2 &= 0 \\ -y+z+2 &= 0 \end{cases}$ en ajoutant $\begin{cases} x-y+1 &= 0 \\ -y+z+2 &= 0 \end{cases}$ l'équation 1 et l'équation 3 $\iff \begin{cases} x-y+1 &= 0 \\ -y+z+2 &= 0 \end{cases}$

En posant $z=t,\ t\in\mathbb{R}$ la deuxième équation donne y=t+2 et enfin la première x = y - 1 = t + 2 - 1 = t + 1.

b. Conclusion du calcul précédent : l'ensemble des points appartenant à (P), (Q) et (R) est une droite (d) d'équations paramétriques :

$$\begin{cases} x = t+1 \\ y = t+2 \\ z = t \end{cases}$$

c. On a déjà \overrightarrow{BC} (-1; 1; 0) et \overrightarrow{BD} (-1; 0; 1). Ces deux vecteurs ne sont manifestement pas colinéaires.

La droite (d) a pour vecteur directeur le vecteur \overrightarrow{u} (1; 1; 1).

On a $\overrightarrow{u} \cdot \overrightarrow{BC} = -1 + 1 + 0 = 0$, donc \overrightarrow{u} et \overrightarrow{BC} sont orthogonaux.

De même $\overrightarrow{u} \cdot \overrightarrow{BD} = -1 + 0 + 1 = 0$, donc \overrightarrow{u} et \overrightarrow{BD} sont orthogonaux.

Conclusion : le vecteur \overrightarrow{u} est orthogonal à deux vecteurs non colinéaires du plan (BCD), donc la droite (d) est orthogonale à ce plan.

Comme précédemment on en déduit qu'une équation du plan (BCD) est de la forme x + y + z + d' = 0.

Or B \in (BCD) \iff 2+2+0 = d' = 0 \iff d' = -4.

Conclusion : une équation du plan (BCD) est :

$$M(x; y; z) \in (BCD) \iff x + y + z - 4 = 0.$$

3. Les trois points A, B et C ont une cote nulle : une équation du plan (ABC) est donc z = 0;

Les trois points A, B et D ont une ordonnée égale à 2 : une équation du plan (ABD) est donc y = 2;

Les trois points A, C et D ont une abscisse égale à 1 : une équation du plan (ACD) est donc x = 1;

On admet que ces plans sont respectivement parallèles aux plans de repères $(O, \overrightarrow{i}, \overrightarrow{j}), (O; \overrightarrow{i}, \overrightarrow{k})$ et $(O; \overrightarrow{j}, \overrightarrow{k})$.

- **4. a.** Soit M(t+1; t+2; t) un point quelconque de (d).
 - $d(M,(ABC)) = \frac{|t|}{\sqrt{1^2}} = |t|;$
 - $d(M,(ABD)) = \frac{|t+2-2|}{\sqrt{1^2}} = |t|;$
 - $d(M,(ACD)) = \frac{|t+1-1|}{\sqrt{1^2}} = |t|;$

Conclusion : tout point de la droite (d) est équidistant des plans (ABC), (ABD) et (ACD).

b. D'après la question précédente, les points de (d) sont équidistants de (ABC), (ABD) et (ACD). Cherchons si ces points sont à la même distance du plan (BCD).

Une équation du plan (BCD) étant x+y+z-4=0, on a $d(M,(BCD))=\frac{|t+1+t+2+t-4|}{\sqrt{1^2+1^2+1^2}}=\frac{|3t-1|}{\sqrt{3}}.$

Un point de (d) est donc équidistant de (ABC) et de (BCD) (et donc de ABD) et (ACD)) si et seulement si :

$$|t| = \frac{|3t - 1|}{\sqrt{3}} \Rightarrow t^2 = \frac{(3t - 1)^2}{3} \iff 3t^2 = 9t^2 + 1 - 6t \iff 6t^2 - 6t + 1 = 0$$

Cette équation du deuxième degré a un discriminant égal à 36-24=12 > 0. Elle a donc deux solutions.

Il existe donc deux points de la droite (d) équidistants des trois plans (ABD), (ACD) et (BCD), mais il peut en exister d'autres.

EXERCICE 4 5 points

1. On a $d(M, P) = \frac{\left|z + \frac{1}{4}\right|}{\sqrt{1^2}} = \left|z + \frac{1}{4}\right|$.

Or
$$d(M, P) = MF \iff d^2(M, P) = MF^2 \iff (z + \frac{1}{4})^2 = x^2 + y^2 + (z - \frac{1}{4})^2 \iff x^2 + y^2 - z^2 - \frac{z}{2} - \frac{1}{16} + z^2 + \frac{1}{16} - \frac{z}{2} = 0 \iff x^2 + y^2 = z.$$

Conclusion : $M(x; y; z) \in (S) \iff x^2 + y^2 = z$.

2. a. Il faut résoudre le système :

$$\left\{\begin{array}{cccc} x^2+y^2 & = & z \\ z & = & 2 \end{array}\right. \iff \left\{\begin{array}{cccc} x^2+y^2 & = & 2 \\ z & = & 2 \end{array}\right.$$

On reconnait l'équation d'un cercle centré en (0; 0; 2), de rayon $\sqrt{2}$ et situé dans le plan horizontal d'équation z = 2.

b. On résout de même le système :

$$\left\{\begin{array}{cccc} x^2 + y^2 & = & z \\ x & = & 0 \end{array}\right. \iff \left\{\begin{array}{cccc} y^2 & = & z \\ x & = & 0 \end{array}\right.$$

On reconnait l'équation d'une parabole contenant l'origine située dans le plan vertical dont une équation est x = 0.

- **3.** Dans cette question, *x* et *y* désignent des nombres entiers naturels.
 - a. On a successivement:
 - $x \equiv 0$ [7] $\Rightarrow x^2 \equiv 0$ [7]
 - $x \equiv 1$ [7] $\Rightarrow x^2 \equiv 1$ [7]
 - $x \equiv 2$ [7] $\Rightarrow x^2 \equiv 4$ [7]
 - $x \equiv 3$ [7] $\Rightarrow x^2 \equiv 2$ [7]
 - $x \equiv 4$ [7] $\Rightarrow x^2 \equiv 2$ [7]
 - $x \equiv 5$ [7] $\Rightarrow x^2 \equiv 4$ [7]
 - $x \equiv 6$ [7] $\Rightarrow x^2 \equiv 1$ [7]

Les restes dans la division euclidienne de x^2 par 7 peuvent être : 0, 1, 2 ou 4.

b. D'après la question **1.**:

$$x^2 \equiv \alpha$$
 [7]

$$y^2 \equiv \beta$$
 [7],

avec α et β appartenant à l'ensemble $\{0 \; ; \; 1 \; ; \; 2 \; ; \; 4\}$.

Il en résulte que $x^2 + y^2 \equiv \alpha + \beta$ [7], les valeurs possibles pour $\alpha + \beta$ étant 0, 1, 2, 3, 4, 5, 6 et 8.

Conclusion 7 divise $x^2 + y^2$ si et seulement si $\alpha + \beta = 0$, ce qui n'est possible que si $\alpha = 0$ et $\beta = 0$, c'est-à-dire si 7 divise x et y.

Comme dans les questions précédentes, il s'agit de trouver dans le plan horizontal z = 98 des points dont les coordonnées vérifient $x^2 + y^2 = 98$.

Comme $98 = 70 + 28 = 7 \times 10 + 7 \times 4 = 7 \times 14$, $x^2 + y^2$ est donc divisible par 7 et d'après la question précédente ceci n'est possible que si x et y sont divisibles par 7.

D'autre part l'équation $x^2 + y^2 = 98$ entraîne que $0 \le x \le 9$ et $0 \le y \le 9$.

Le seul multiple de 7 dans cet intervalle est 7.

Il y a donc un seul point solution:

$$M_1(7;7;98)$$

4. ANNEXE Exercice 2

À rendre avec la copie

