Corrigé du baccalauréat S Métropole
juin 2004

EXERCICE 1 4 points
Commun à tous les candidats

1. On a pour tout \(n \in \mathbb{N} \), \(u_{n+1} = u_n + 2n + 3 \), donc \(u_{n+1} - u_n = 2n + 3 \).
 Or \(2n + 3 > 0 \), donc \(u_{n+1} - u_n > 0 \) quel que soit \(n \in \mathbb{N} \). Conclusion : la suite \((u_n)\) est strictement croissante.

2. a. Démonstration par récurrence :
 — Initialisation : \(u_0 = 1 > 0^2 \) : vrai;
 — Hérité : supposons qu’il existe \(n \in \mathbb{N} \) tel que \(u_n > n^2 \), alors \(u_{n+1} = u_n + 2n + 3 > n^2 + 2n + 1 + 2 \) ou encore \(u_{n+1} > (n + 1)^2 \).
 On a donc démontrée par récurrence que pour tout \(n \in \mathbb{N} \), \(u_n > n^2 \).

b. Comme \(\lim_{n \to +\infty} n^2 = +\infty \) on a par comparaison : \(\lim_{n \to +\infty} u_n = +\infty \).

3. On calcule les premiers termes :
 \[u_0 = 1 \]
 \[u_1 = u_0 + 3 = 4 \]
 \[u_2 = u_1 + 2 + 3 = 9 \]
 \[u_3 = u_2 + 4 + 3 = 16 \]
 \[u_4 = u_3 + 6 + 3 = 25 \]

On peut donc conjecturer que : \(u_n = (n + 1)^2 \).

Démonstration de la propriété par récurrence :
 — Initialisation \(u_0 = 1 = 1^2 \)
 — Hérité : supposons qu’il existe \(n \in \mathbb{N} \) tel que \(u_n = (n + 1)^2 \)
 On a donc \(u_{n+1} = u_n + 2n + 3 = (n + 1)^2 + 2n + 3 = n^2 + 2n + 1 + 2n + 3 = n^2 + 4n + 4 = (n + 2)^2 \).
 On a donc démontré par récurrence que quel que soit \(n \in \mathbb{N} \), \(u_n = (n + 1)^2 \).

EXERCICE 2 5 points
Candidats n’ayant pas suivi l’enseignement de spécialité

1. \((1 + i)^6 = (1 + i)^2 - 2i \); d’après la question précédente \((1 + i)^6 = -8i \)

2. a. Soit l’équation \(z^2 = -8i \); d’après la question précédente \((1 + i)^6 = -8i \)

3. \((1 + i)^6 = -8i \) si et seulement si \((1 + i)^2 = -8i \).

4. Soit \(r \) la rotation de centre \(O \) et d’angle \(\frac{2\pi}{3} \).

 a. Soit \(A \) le point d’affixe \(2i \) et \(B \) est l’image de \(A \) par \(r \), on a :
 \[z_B = b = z_A e^{\frac{2\pi}{3}} \].

Pour \(C \), l’image de \(B \) par la rotation \(r \), on a : \(c = e^{\frac{2\pi}{3}} b = \)
\[
\left(\frac{1}{2} + i \frac{\sqrt{3}}{2} \right) (-\sqrt{3} - i) = \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} + i \left(\frac{1}{2} - \frac{3}{2} \right) = \sqrt{3} - i.
\]

b. On a \((-\sqrt{3} - i)^3 = (-\sqrt{3} - i)^2 \cdot (-\sqrt{3} - i) = (2 + 2i\sqrt{3}) (-\sqrt{3} - i) = -2\sqrt{3} + 2\sqrt{3} - 2i - 6i = -8i.

Variante : pour \(c\) : on calcule facilement que \(|c| = 2\), d'où \(c = 2 \left(\frac{\sqrt{3}}{2} - i \frac{1}{2} \right) =
\]

\[2 (\cos \left(-\frac{\pi}{6} \right) + i \sin \left(-\frac{\pi}{6} \right)) = 2e^{-i\frac{\pi}{6}}.
\]

D'où \(c^3 = (2e^{-i\frac{\pi}{6}})^3 = 8e^{-i\frac{\pi}{3}} = -8i\).

Donc \(b\) et \(c\) sont solution de l'équation (\(E'\)).

5. a. Représentation des points A, B, C.

\[b. \ AB = |z_B - z_A| = \left| -\sqrt{3} - 3i \right| = 2\sqrt{3};
\]

\[AC = |z_C - z_A| = \left| \sqrt{3} - 3i \right| = 2\sqrt{3};
\]

\[BC = |z_C - z_B| = |2\sqrt{3}| = 2\sqrt{3}.
\]

Par la rotation \(r\) :

- l'image de A est B;
- l'image de B est C;
- l'image de C est \(C'\) tel que \(z_{C'} = e^{\frac{2\pi}{3}} (\sqrt{3} - i) = \left(-\frac{1}{2} + i \frac{\sqrt{3}}{2} \right) (\sqrt{3} - i) =
\]

\[-\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} + i \left(\frac{1}{2} + \frac{3}{2} \right) = 2i.
\]

Donc \(C' = A\).

L'image de C est A.

Les trois points images sont donc les sommets du triangle BCA. Or ce triangle a ses trois côtés de même longueur : il est donc équilatéral.

c. G centre de gravité (ou isobarycentre des points A, B et C) du triangle ABC

a une affixe telle que \(z_G = \frac{z_A + z_B + z_C}{3} = \frac{2i - \sqrt{3} - i + \sqrt{3} - i}{3} = 0\).

Le centre de gravité est donc le point O.

Autre méthode : par définition de la rotation on a OA = OB = OC ; O est donc le centre du cercle circonscrit au triangle (ABC) ; or ce triangle est équilatéral : son centre du cercle circonscrit est aussi son centre de gravité.

Exercice 2

5 points

Candidats ayant suivi l'enseignement de spécialité

1. \(1 + x + x^2 + \cdots + x^{k-1}\) est la somme des \(k\) premiers termes de la suite géométrique de premier terme 1 et de raison \(x\) : elle est donc égale à : \(\frac{x^k - 1}{x - 1}\) (pour \(x \neq 1\)).

Donc \((x - 1) \left(1 + x + x^2 + \cdots + x^{k-1} \right) = (x - 1) \times \frac{x^k - 1}{x - 1} = x^k - 1.

Pour \(x = 1\) : l'égalité est évidente.

Métropole 2 juin 2004
Correction du baccalauréat S

A. P. M. E. P.

EXERCICE 3

Commun à tous les candidats

1. Réponse D : Pour que S appartienne à D, il faut que les coordonnées de S vérifient les équations paramétriques de D. Or ces coordonnées de S ne vérifient ni A(z ≠ 3) ni B (il faudrait t = −1 et t = 1/3), mais vérifient les équations C et D.

De plus D est perpendiculaire à P il faut que tout vecteur directeur de D soit colinaire à tout vecteur normal de P. Le vecteur \(\overrightarrow{n} \) (1 ; 1 ; -3) est normal à P.

Or la droite définie par C a un vecteur directeur de coordonnées (1 ; -2 ; 0) qui n’est pas colinaire à \(\overrightarrow{n} \).

Par contre un vecteur directeur de la droite définie par D a pour coordonnées (1 ; 1 ; -3) qui sont les coordonnées de \(\overrightarrow{n} \).
Correction du baccalauréat S

2. Réponse D car seules les coordonnées de D vérifient l’équation du plan \(\mathcal{P} \): elles correspondent à la valeur \(t = \frac{14}{11} \).

3. Réponse B :
\[
d(S, \mathcal{P}) = \frac{|1 - 2 + 4|}{\sqrt{1^2 + 1^2 + (-3)^2}} = \frac{3}{\sqrt{11}}.
\]

4. Réponse B :
La distance de S au plan est inférieure à 3 donc l’intersection de la sphère et du plan \(\mathcal{P} \) est un cercle de centre H.

Le triangle SHM, M étant un point du cercle est rectangle en H.

D’après le théorème de Pythagore on a : \(3^2 = \left(\frac{3}{\sqrt{11}} \right)^2 + r^2 \iff r^2 = 9 - \frac{9}{11} = \frac{90}{11} \Rightarrow r = 3 \sqrt{\frac{10}{11}}. \)

EXERCICE 4

Commun à tous les candidats

1. On a donc
\[
0,5 = \int_0^{200} \lambda e^{-\lambda x} \, dx = \left[-e^{-\lambda x}\right]_0^{200} = -e^{-200\lambda} + 1 \iff e^{-200\lambda} = \frac{1}{2}.
\]

2. La probabilité cherchée est
\[
P(S, H) = 1 - \int_0^{300} e^{-\lambda x} \, dx = 1 - \left[-e^{-\lambda x}\right]_0^{300} = e^{-300\lambda} = \frac{e^{-\lambda} - \lambda}{\lambda}
\]

3. a. Pour calculer l’intégrale on pose :
\[
u(x) = x \; \quad \nu'(x) = e^{-\lambda x}
\]
\[
u'(x) = 1 \; \quad \nu(x) = -\frac{1}{\lambda}e^{-\lambda x}
\]
Les fonctions \(u \), \(u' \), \(v \), \(v' \) étant continues, on peut intégrer par parties et
\[
\int_0^A \lambda x e^{-\lambda x} \, dx = \left[-\frac{1}{\lambda}xe^{-\lambda x}\right]_0^A + \frac{1}{\lambda} \int_0^A e^{-\lambda x} \, dx = \left[-xe^{-\lambda x} - \frac{1}{\lambda}e^{-\lambda x}\right]_0^A
\]
\[
-\frac{1}{\lambda} e^{-\lambda x} \bigg|_0^A = -\lambda e^{-\lambda A} - \frac{1}{\lambda} e^{-\lambda A} + 1 = \frac{-\lambda Ae^{-\lambda A} - e^{-\lambda A} + 1}{\lambda}.
\]

4. Comme \(\lim_{\lambda \to +\infty} e^{-\lambda A} = 0 \) (car \(\lambda > 0 \) et que \(\lim_{A \to +\infty} e^{-\lambda A} = 0 \), on en déduit que :
\[
\lim_{\lambda \to +\infty} \frac{-\lambda Ae^{-\lambda A} - e^{-\lambda A} + 1}{\lambda} = \frac{1}{\lambda} \frac{200}{\ln 2}.
\]

Donc \(d_{\text{m}} = \frac{200}{\ln 2} \approx 289 \) semaines à une semaine près.

EXERCICE 5

Commun à tous les candidats

1. \(x'(t) = v(t) \).
 - Si \(v \) est solution de l’équation (F), alors pour tout réel \(t \geq 0 \),
 \[
v'(t) = -\frac{1}{8}v(t) + \frac{1}{4}.
\]
Or \(x'(t) = v(t) \Rightarrow x''(t) = v'(t) \).

L’équation précédente s’écrit donc :
\[
x''(t) = -\frac{1}{8}x'(t) + \frac{1}{4}
\]
\[
8x''(t) = -x'(t) + 2
\]
\[
25x'(t) + 200x''(t) = 50
\]
La fonction x est donc solution de l’équation (E).

- Inversement si x est solution de (E), alors pour tout réel positif,

$$25x'(t) + 200x''(t) = 50$$

$$x''(t) = -\frac{26}{200}x'(t) + \frac{50}{200}$$

$$x''(t) = -\frac{1}{8}x'(t) + \frac{1}{4}$$

$$v'(t) = -\frac{1}{8}v(t) + \frac{1}{4}$$

car en posant $v(t) = x'(t), v'(t) = x''(t)$

Conclusion : la fonction x est solution de (E) si et seulement si la fonction v est solution de (F).

Résolution de (F) : cette équation est de la forme $y' = ax + b$. Elle a une solution particulière constante $-\frac{b}{a} = -\frac{1}{8} = 2$ et les solutions de l’équation $y = ax$ sont de la formes $y = Ke^{tx} = Ke^{-\frac{t}{8}}$ (avec $K \in \mathbb{R}$).

Les solutions de l’équation $y = ax + b$ sont donc de la forme :

$$y = Ke^{-\frac{t}{8}} + 2$$

Les fonctions v solutions de l’équation (F) sont les fonctions définies sur $[0; +\infty[$ par

$$v(t) = Ke^{-\frac{t}{8}} + 2$$

2. a. Calcul de $x'(t)$: on sait que $x'(t) = v(t) = Ke^{-\frac{t}{8}} + 2$.

Comme $x'(0) = 0 \iff Ke^{-\frac{t}{8}} + 2 = 0 \iff K + 2 = 0 \iff K = -2$, on a finalement pour tout t positif :

$$x'(t) = 2 - 2e^{-\frac{t}{8}}$$

b. Calcul de $x(t)$: d’après la question précédente x est une primitive sur $[0; +\infty[$ de la fonction $x \mapsto 2 - 2e^{-\frac{t}{8}},$ soit :

$$x(t) = 2t - 2 \times \frac{1}{9}e^{-\frac{t}{8}} + K' = 2t + 16e^{-\frac{t}{8}} + K'$$

avec $K' \in \mathbb{R}$.

Comme on sait que $x(0) = 0$, alors $16 + K' = 0 \iff K' = -16$.

Conclusion : la fonction solution de (E) est définie sur $[0; +\infty[$ par :

$$x(t) = 2t - 16 + 16e^{-\frac{t}{8}}$$

3. On sait que $\lim_{t \to +\infty} e^{-\frac{t}{8}} = 0$, alors $\lim_{t \to +\infty} v(t) = 2$.

Donc $V = 2$.

La vitesse v du chariot est inférieure ou égale à 90 % de V si

$$v(t) \leq 0,9V \iff -2e^{-\frac{t}{8}} + 2 \leq 0,9 \times 2 \iff e^{-\frac{t}{8}} \geq 0,1 \iff -\frac{1}{8}t \geq \ln 0,1 \iff \frac{1}{8}t \leq 1 \iff t \leq 8 \ln 10 \approx 18,4$$(secondes.)

4. La distance parcourue par le chariot au bout de 30 secondes est :

$$x(30) = 2 \times 30 - 16 + 16e^{-\frac{30}{8}} \approx 44,4$$

En 30 secondes le chariot a parcouru environ 44,4 mètres à 1 décimètre près.