∽ Corrigé du baccalauréat S Nouvelle-Calédonie 16 novembre 2012 ∾

EXERCICE 1 6 points
Commun à tous les candidats

Partie A

1. **a.** f est une somme de fonctions dérivables sur $[0; +\infty[$ et sur cet intervalle :

$$f'(x) = 5 \times \frac{1}{x+3} - 1 = \frac{5-x-3}{x+3} = \frac{2-x}{x+3}.$$

Or $x \geqslant 0 \Rightarrow x + 3 \geqslant 3 > 0$.

• $2-x>0 \iff x<2$.

• $2-x<0 \iff x>2$.

• $2-x=0 \iff x=2$.

b. - La fonction f est croissante sur [0; 2[.

- La fonction f est décroissante sur]2; $+\infty$ [.

- $f(2) = 5\ln(5) - 2 \approx 4,047$ est le maximum de la fonction f sur $[0; +\infty[$.

On a le tableau de variations suivant :



c. Comme x > 0, on peut factoriser :

$$f(x) = 5\ln(x+3) - x = 5\ln\left[x\left(1 + \frac{3}{x}\right)\right] - x = 5\ln x + 5\ln\left(1 + \frac{3}{x}\right) - x = 5\ln x - x + 5\ln\left(1 + \frac{3}{x}\right) = f(x) = x\left(5\frac{\ln x}{x} - 1\right) + 5\ln\left(1 + \frac{3}{x}\right).$$

d. On sait que $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$ et que $\lim_{x \to +\infty} \frac{1}{x} = 0$, donc que $\lim_{x \to +\infty} \ln \left(\frac{\ln x}{x} \right) = \ln 1 = 0$, donc finalement :

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 5 \times (-x) = -\infty.$$

D'autre part $f(0) = 5 \ln 3$.

e. Voir le tableau plus haut.

2. a. Sur l'intervalle]2 ; $+\infty$ [, f est strictement décroissante de f(2) > 0 à $-\infty$. Il existe donc un réel unique $\alpha > 2$, tel que

$$f(\alpha) = 0 \iff 5\ln(\alpha + 3) - \alpha = 0.$$

b. $f(14) = 5 \ln 17 - 14 \approx 0, 17 > 0$ et $f(15) = 5 \ln 18 - 15 \approx -0, 55 < 0$, donc $14 < \alpha < 15$.

La calculatrice livre:

$$f(14,2) = 5\ln(17,2) - 14,2 \approx 0,02 > 0$$
 et

$$f(14,3) = 5\ln(17,3) - 14,3 \approx -0,05 < 0$$
, donc

$$14,2 < \alpha < 14,3$$
.

c. Le tableau de variations montre donc que :

$$- f(x) > 0 \text{ sur } [0; \alpha[;$$

$$-f(x) < 0 \operatorname{sur} [\alpha; +\infty[;$$

$$-f(\alpha)=0.$$

Partie B

- 1. a. Voir l'annexe 1
 - **b.** La suite semble être croissante.
- 2. a. La fonction g a même sens de variation que la fonction ln, soit croissante; on peut également calculer $g'(x) = \frac{5}{x+3} > 0$ comme quotient de deux nombres supérieurs à zéro.
 - **b.** On a vu dans la partie que $f(\alpha) = 0 \iff 5\ln(\alpha + 3) \alpha = 0 \iff 5\ln(\alpha + 3) = \alpha \iff g(\alpha) = \alpha$.
 - **c.** *Initialisation*: On a $0 \le 4 \le \alpha$: l'encadrement est vrai au rang 0;

Hérédité : Supposons que pour $n \in \mathbb{N}$, on ait $0 \le u_n \le \alpha$

Comme la fonction g est croissante sur $[0; +\infty[$ donc en particulier sur $[0; \alpha]$, on a donc:

$$g(0) \leq g(u_n) \leq g(\alpha)$$
 c'est-à-dire

 $5 \ln 3 \le u_{n+1} \le \alpha$ (d'après la question précédente).

On a donc *a fortiori* : $0 \le u_{n+1} \le \alpha$.

L'encadrement est vrai au rang n + 1.

L'encadrement est vrai au rang 0, et s'il est vrai au rang n, il l'est aussi au rang n+1. On a donc démontré par le principe de récurrence que pour tout naturel $n \in \mathbb{N}$

$$0 \leqslant u_n \leqslant \alpha$$
.

- **d.** On a vu que sur l'intervalle $[0; \alpha[, f(x) > 0 \text{ sur } [0; \alpha[, \text{donc pour tout } u_n \text{ tel que }$
 - $0 \le u_n \le \alpha$, $\ln(u_n + 3) u_n > 0 \iff \ln(u_n + 3) > u_n \iff g(u_n) > u_n \iff u_{n+1} > u_n$, ce qui démontre que la suite (u_n) est croissante.
 - Cette suite est croissante et majorée par α : elle converge donc vers une limite ℓ telle que $\ell \leqslant \alpha$.
- e. La relation $u_{n+1} = 5 \ln (u_n + 3)$ donne par continuité de la fonction dérivable g et par limiteen plus l'infini :

$$\ell = \ln(\ell + 3) \iff \ln(\ell + 3) - \ell = 0 \iff f(\ell) = 0.$$

Or on a vu à la question 2. a. de la partie A que α est la seule solution de l'équation f(x) = 0 sur $[0; +\infty[$. Conclusion $\ell = \alpha$.

On a donc
$$\lim_{n\to+\infty} u_n = \alpha$$
.

- 3. a. Cet algorithme calcule successivement u_1, u_2, \ldots On a vu que cette suite converge vers le nombre α supérieur à 14,2. La condition u-14,2<0 sera donc réalisée et l'algorithme affichera la première valeur de la suite supérieure à 14,02.
 - **b.** Il suffit de taper sur la calculatrice :

 $u_0 = 4$ Entrée

 $5 \star \ln(ANS(1) + 3)$ Entrée

Entrée, etc

On obtient $u_6 \approx 14,22315 > 14,2$.

EXERCICE 2 4 points Commun à tous les candidats

Partie A

1. Les trois tirages sont indépendants, et à chaque tirage la probabilité de tirer une boule rouge est égale à $\frac{2}{3+2} = \frac{2}{5}$: on a donc une épreuve de Bernoulli et la vraiable aléatoire X suit une loi binomiale de paramètres n=3 et $p=\frac{2}{5}$.

2. La probabilité de tirer k ($0 \le k \le 3$) boule(s) rouge(s) est égale à

$$p(X = k) = {3 \choose k} \left(\frac{2}{5}\right)^k \left(1 - \frac{2}{5}\right)^{3-k} \quad (\star).$$

En particulier:
$$p(X=1) = \binom{3}{1} \left(\frac{2}{5}\right)^1 \left(1 - \frac{2}{5}\right)^{3-1} = 3 \times \frac{2}{5} \times \frac{3^2}{5^2} = \frac{54}{125}$$
.

3. On sait que $E(X) = n \times p = 3 \times \frac{2}{5} = \frac{6}{5} = 1, 2.$

Vérification : on calcule avec la formule (\star) :

$$p(X=0) = \left(\frac{3}{5}\right)^3 = \frac{27}{125};$$

$$p(X=2) = \frac{3!}{2!} \left(\frac{2}{5}\right)^2 \times \frac{3}{5} = \frac{36}{125};$$

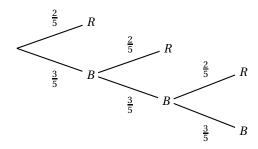
$$p(X=3) = \left(\frac{2}{5}\right)^3 = \frac{8}{125}.$$

On a donc
$$E(X) = 0 \times \frac{27}{125} + 1 \times \frac{54}{125} + 2 \times \frac{36}{125} + 3 \times \frac{8}{125} = \frac{54 + 72 + 24}{125} = \frac{150}{125} = \frac{6}{5}$$

Sur un grand nombre de tirages on tirera un peu plus d'une boule rouge en moyenne par tirage (en moyenne 150 boules rouges sur 125 tirages).

Partie B

1.



2. On a
$$p(Y = 1) = \frac{2}{5} + \frac{3}{5} \times \frac{2}{5} + \frac{3}{5} \times \frac{3}{5} \times \frac{2}{5} = \frac{2}{5} + \frac{6}{25} + \frac{18}{125} = \frac{50 + 30 + 18}{125} = \frac{98}{125}$$
.

$$p(Y = 0) = \frac{3}{5} \times \frac{3}{5} \times \frac{3}{5} = \frac{27}{125}$$
.

Donc E(Y) =
$$1 \times \frac{98}{125} + 0 \times \frac{27}{125} = \frac{98}{125}$$
.

3. Toujours d'après l'arbre :
$$p(N=1) = \frac{2}{5}$$
; $p(N=2) = \frac{3}{5} \times \frac{2}{5} = \frac{6}{25}$ et $p(N=3) = \frac{3}{5} \times \frac{3}{5} = \frac{9}{25}$.
On a donc $E(N) = 1 \times \frac{2}{5} + 2 \times \frac{6}{25} + 3 \times \frac{9}{25} = \frac{2}{5} + \frac{12}{25} + \frac{27}{25} = \frac{10 + 12 + 27}{125} = \frac{49}{25}$.

4. On a
$$\frac{E(Y)}{E(N)} = \frac{\frac{98}{125}}{\frac{49}{25}} = \frac{98}{125} \times \frac{25}{49} = \frac{2}{5}$$
, soit la proportion de boules rouges dans l'urne.

EXERCICE 3 5 points

Commun à tous les candidats

Partie A: restitution organisée de connaissances

Partie B

1. D'après le résultat de la partie A les fonctions solutions sont de la forme :

$$x \longmapsto Ce^{-3x} + 2$$
.

Or $\lim_{x \to +\infty} C e^{-3x} = 0$, donc $\lim_{x \to +\infty} C e^{-3x} + 2 = 2$: toutes ces fonctions ont une représentation graphique qui admet la droite horizontale d'équation y = 2, comme asymptote horizontale au voisinage de plus l'infini. Affirmation vraie.

2. On sait que $f(x) = Ce^x$.

$$f(\alpha + \beta) = Ce^{\alpha + \beta} = Ce^{\alpha} \times e^{\beta};$$

$$f(\alpha) \times f(\beta) = Ce^{\alpha} \times Ce^{\beta} = C^2e^{\alpha} \times e^{\beta}$$
. Affirmation fausse.

respectives

Une fonction solution est définie sur \mathbb{R} par $f(x) = Ce^{-2x}$.

$$f(0) = \frac{3}{2} \iff Ce^{-2 \times 0} = \frac{3}{2} \iff C = \frac{3}{2}.$$

Donc sur \mathbb{R} , $f(x) = \frac{3}{2}e^{-2x}$. Une primitive de cette fonction est $F(x) = \frac{1}{-2} \times \frac{3}{2}e^{-2x} = -\frac{3}{4}e^{-2x}$

La fonction est positive sur [0; ln3], donc l'aire du domaine est égal en unité d'aire à :

$$\int_0^{\ln 3} f(x) \, dx = [F(x)]_0^{\ln 3} = F(\ln 3) - F(0) = -\frac{3}{4} e^{-2\ln 3} + \frac{3}{4} e^{-2 \times 0} = \frac{3}{4} \left(1 - e^{-2\ln 3} \right) = \frac{3}{4} \left(1 - \frac{1}{e^{2\ln 3}} \right) = \frac{3}{4} \left(1 - \frac{1}{e^{2\ln 3$$

EXERCICE 4 5 points

Pour les candidats n'ayant pas suivi l'enseignement de spécialité

Partie A

1.
$$z^2 - 2z + 2 = 0 \iff (z - 1)^2 - 1 + 2 = 0 \iff (z - 1)^2 + 1 = 0 \iff (z - 1)^2 - i^2 = 0 \iff (z - 1 + i)(z - 1 - i) = 0 \iff \begin{cases} z - 1 + i = 0 \text{ ou} \\ z - 1 - i = 0 \end{cases} \iff \begin{cases} z = 1 - i \text{ ou} \\ z = 1 + i \end{cases}.$$

2. Soit M_1 d'affixe $z_1 = 1 - i$. On a $AM_1 = |z_1 - z_A| = |1 - i - 1| = |-i| = 1$.

De même $AM_2 = |z_2 - z_A| = |1 + i - 1| = |i| = 1$. Ces deux résultats signifient que M_1 et M_2 appartiennent au cercle de centre A et de rayon 1 soit au cercle \mathscr{C} .

Partie B

1. Voir à la fin de l'écercice.

2.
$$z' = \frac{2z-1}{2z-2} \Rightarrow z'-1 = \frac{2z-1}{2z-2}-1 \iff z'-1 = \frac{2z-1-2z+2}{2z-2} \iff z''-1 = \frac{1}{2(z-1)} \iff (z'-1)(z-1) = \frac{1}{2}$$
.

3. Le résultat précédent entraîne :

- en termes de modules : $AM \times AM' = \frac{1}{2}$;
- le produit des deux complexes étant non nul aucun des deux facteurs ne peut l'être, et en particulier $z'-1\neq 0 \iff z'\neq 1$, soit $M'\neq A$;
- en termes d'argument : $\arg[(z'-1)(z-1)] = 0 + 2k\pi$. Or $\arg[(z'-1)(z-1)] = (\overrightarrow{u}; \overrightarrow{AM}) + (\overrightarrow{u}; \overrightarrow{AM'})$, $\operatorname{donc}(\overrightarrow{u}; \overrightarrow{AM}) + (\overrightarrow{u}; \overrightarrow{AM'}) = 0 + 2k\pi$, où k

est un entier relatif.

4. On a $z_P = 1 + e^{i\frac{\pi}{4}} \iff z_P - 1 = e^{i\frac{\pi}{4}} \Rightarrow |z_P - 1| = \left| e^{i\frac{\pi}{4}} \right| \iff |z_P - 1| = 1.$

Cette dernière égalité montre que P appartient au cercle de centre A et de rayon 1, donc au cercle \mathscr{C} . Il ne reste plus qu'à construire sur ce cercle le point tel que $(\overrightarrow{u}, \overrightarrow{AP}) = \frac{\pi}{4}$.

5. On a AP ×AP' = $\frac{1}{2}$; or AP = 1, donc AP' = $\frac{1}{2}$. Le point P' appartient au cercle \mathscr{C}_1 de centre A et de rayon $\frac{1}{2}$. D'autre part on a $(\overrightarrow{u}, \overrightarrow{AP'}) = -\frac{\pi}{4}$.

On peut donc construire P_1 symétrique sur le cercle $\mathscr C$ du point P autour de l'axe horizontal contenant A. Le point P' est le point commun à $[AP_1]$ et au cercle $\mathscr C_1$. Voir plus bas.

6. a. On a donc $z = \frac{3}{4} + \alpha i$ avec $\alpha \in \mathbb{R}$. D'où:

$$z' = \frac{2(\frac{3}{4} + \alpha i) - 1}{2(\frac{3}{4} + \alpha i) - 2} = \frac{\frac{3}{2} + 2\alpha i - 1}{\frac{3}{2} + 2\alpha i - 2} = \frac{\frac{1}{2} + 2\alpha i}{-\frac{1}{2} + 2\alpha i} = \frac{\left(\frac{1}{2} + 2\alpha i\right)\left(-\frac{1}{2} - 2\alpha i\right)}{\left(-\frac{1}{2} + 2\alpha i\right)\left(-\frac{1}{2} - 2\alpha i\right)} = \frac{-\frac{1}{4} - \alpha i - \alpha i + 4\alpha^{2}}{\frac{1}{4} + 4\alpha^{2}} = z' = \frac{-\frac{1}{4} - 2\alpha i + 4\alpha^{2}}{\frac{1}{4} + 4\alpha^{2}}.$$

D'où
$$|z'|^2 = \frac{\left(-\frac{1}{4} + 4\alpha^2\right)^2}{\left(\frac{1}{4} + 4\alpha^2\right)^2} + \frac{4\alpha^2}{\left(\frac{1}{4} + 4\alpha^2\right)^2} = \frac{\frac{1}{16} + 16\alpha^4 - 2\alpha^2 + 4\alpha^2}{\left(\frac{1}{4} + 4\alpha^2\right)^2} = \frac{\frac{1}{16} + 16\alpha^4 + 2\alpha^2}{\left(\frac{1}{4} + 4\alpha^2\right)^2} = \frac{\frac{$$

$$\frac{\left(\frac{1}{4}+4\alpha^2\right)^2}{\left(\frac{1}{4}+4\alpha^2\right)^2}=1$$
. D'où $|z'|=1$: le point M' appartient au cercle \mathscr{C}' de centre O de rayon 1.

b. Un point M' de \mathscr{C}' a une affixe qui peut s'écrire $z' = e^{ia}$ avec $a \in \mathbb{R}$. Son ou ses antécédents par f vérifient :

$$e^{ia} = \frac{2z-1}{2z-2} \iff 2ze^{ia} - 2e^{ia} = 2z-1 \iff 2z(e^{ia}-1) = 2e^{ia} - 1 \iff z = \frac{2e^{ia}-1}{e^{ia}-1} \text{ si } e^{ia} - 1 \neq 0.$$

Or $e^{ia} - 1 = 0 \iff e^{ia} = 1 \iff a = 0 \iff z = 1$. C'est le point A et on sait que ce point n'a pas d'image par f. La réponse est : non.

EXERCICE 4 5 points

Pour les candidats ayant suivi l'enseignement de spécialité

Partie A

1. DB = DE = $\sqrt{2}$ et de façon évidente $(\overrightarrow{DB}, \overrightarrow{DE}) = \frac{\pi}{2}$, donc B a pour image E par r.

D'autre part l'image de C par r est le point F

Comme B et C ont pour images respectives par r, E et F, l'image du segment [BC] sert le segment [EF] et l'image du milieu I de [BC] est le milieu J de [EF].

2. Comme A est différent de I et B différent de J, on sait qu'il existe une seule similitude transformant A en C et et I en J : c'est donc la rotation *r*.

3. a.
$$z_A = 0$$
; $z_C = 1 + i$, $z_I = 1 + \frac{1}{2}i$ et $z_J = \frac{1}{2} + 2i$.

 ${\bf b.}\;\;s$ étant une similitude directe, on sait que son écriture exomplexe est de la forme :

$$z' = az + b$$
, avec $a \in \mathbb{C}$, $b \in \mathbb{C}$.

En utilisant les deux points donnés et leurs images, on obtient le système :

$$\begin{cases} 1 + \frac{1}{2}i &= a \times 0 + b \\ \frac{1}{2} + 2i &= a \times (1+i) + b \end{cases} \iff \begin{cases} 1 + \frac{1}{2}i &= b \\ \frac{1}{2} + 2i &= a \times (1+i) + 1 + \frac{1}{2}i \end{cases} \iff \begin{cases} 1 + \frac{1}{2}i &= b \\ \frac{1}{2} + 2i &= a \times (1+i) + 1 + \frac{1}{2}i \end{cases} \iff \begin{cases} 1 + \frac{1}{2}i &= b \\ -\frac{1}{2} + \frac{3}{2}i &= a \times (1+i) \end{cases}$$

D'où
$$a = \frac{-\frac{1}{2} + \frac{3}{2}i}{1+i} = \frac{(-1+3i)(1-i)}{2(1+i)(1-i)} = \frac{-1+3+i+3i}{2(1+1)} = \frac{1}{2}+i.$$

L'écriture complexe de s est $z' = \left(\frac{1}{2} + i\right)z + 1 + \frac{1}{2}i$.

c. Recherche du point invariant (le centre de la similitude) :

$$z = \left(\frac{1}{2} + i\right)z + 1 + \frac{1}{2}i \iff z\left(\frac{1}{2} - i\right) = 1 + \frac{1}{2}i \iff z = \frac{1 + \frac{1}{2}i}{\frac{1}{2} - i} = \frac{\left(1 + \frac{1}{2}i\right)\left(\frac{1}{2} + i\right)}{\left(\frac{1}{2} - i\right)\left(\frac{1}{2} + i\right)} = \frac{\frac{1}{2} - \frac{1}{2} + i + i\frac{1}{4}}{\frac{1}{4} + 1} = \frac{\frac{5}{4}i}{\frac{5}{4}} = i.$$

Le point invariant a pour affixe i : c'est le point D.

Partie B

1. On sait que l'écriture complexe de la similitude s_1 est de la forme :

z' = az + b. En utilisant le fait que O a pour image M et que N a pour image P, on obtient le système :

$$\left\{ \begin{array}{lll} m & = & a \times 0 + b \\ p & = & an + b \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{lll} m & = & b \\ p & = & an + m \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{lll} m & = & b \\ p - m & = & an \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{lll} \displaystyle \frac{p - m}{p} & = & b \\ \end{array} \right.$$

Donc s_1 a pour écriture complexe :

$$z' = \frac{p - m}{n}z + m.$$

On admet que l'écriture complexe de s_2 est $z' = \frac{p-n}{m}z + n$.

2. a. OMPN est un parallélogramme $\iff \overrightarrow{OM} = \overrightarrow{NP} \iff m = p - n \iff p - m = n$.

L'écriture complexe de s_1 devient $z' = \frac{n}{n}z + m \iff z' = z + m$: cette écriture est celle d'une translation de vecteur \overrightarrow{OM} .

De même l'écriture complexe de s_2 s'écrit puisque p - n = m,

z' = z + n: c'est la translation de vecteur \overrightarrow{ON} .

b. On suppose donc que $p - m \neq n$ (donc s_1 et s_2 ne sont pas des translations.

Le point fixe de s_1 a une affixe z qui vérifie :

$$z = \frac{p-m}{n}z + m \iff nz = (p-m)z + n \iff z(m+n-p) = n \iff z = \frac{n}{m+n-p}$$
. s_1 a donc un centre.

De même le point fixe de s_2 a une affixe z qui vérifie :

$$z = \frac{p-n}{m}z + n \iff mz = (p-n)z + n \iff z(m+n-p) = n \iff z = \frac{n}{m+n-p}$$
. s_2 a donc un centre et c'est le même que celui de s_1 .

Annexe 1 (Exercice 1) Commun à tous les candidats

À rendre avec la copie

