Corrigé du baccalauréat S Amérique du Nord 31 mai 2012
Corrigé de A. Saoud Manal

EXERCICE 1

PARTIE A.

1. Un quart des femmes et un tiers des hommes adhèrent à la section tennis, donc

\[p_F(T) = \frac{1}{4} \text{ et } p_F(T) = \frac{1}{3}. \]

30 % des membres de cette association adhèrent à la section tennis, donc \(p(T) = \frac{3}{10}. \)

\(F \) et \(\overline{F} \) forment une partition, d’après le théorème des probabilités totales, on a :

\[p(T) = p(T \cap F) + p(T \cap \overline{F}) = p_F(T) \times p(F) + p_F(\overline{F}) \times p(\overline{F}) = \frac{1}{4} \times p(F) + \frac{1}{3}(1 - p(F)) = \frac{3}{10}. \]

On en déduit que \(\frac{1}{12} p(F) = \frac{3}{10} - \frac{3}{10} \) soit \(p(F) = \frac{2}{5}. \)

2. Il s’agit de calculer \(p_T(F). \) Or \(p_T(F) = \frac{p(T \cap F)}{p(T)} = \frac{p(F) \times p_F(T)}{p(T)} = \frac{\frac{2}{5} \times \frac{1}{4}}{\frac{3}{10}} = \frac{1}{3}. \)

PARTIE B.

1. a. C’est une répétition d’une expérience aléatoire à deux issues, identique et indépendante. La variable aléatoire \(X \), donnant le nombre de membres adhérant à la section tennis parmi les membres choisis, suit donc la loi binomiale de paramètres \(n = 4 \) (nombre d’épreuves) et \(p = \frac{3}{10}. \) On souhaite deux succès, la probabilité est donc \(p(X = 2) = \binom{4}{2} \times \left(\frac{3}{10} \right)^2 \times \left(1 - \frac{3}{10} \right)^{4-2} = \frac{4 \times 3^2 \times 7^2}{10^4} = \frac{1323}{5000} \approx 0,2646. \)

b. Il suffit de considérer l’évènement contraire qui consiste à ne choisir aucun membre du club de tennis \(n \) fois, soit \(\left(\frac{7}{10} \right)^n \). Le résultat est donc \(p_n = 1 - \left(\frac{7}{10} \right)^n \).

c. \(p_n \geq 0,99, 1 - \left(\frac{7}{10} \right)^n \geq 0,99, \left(\frac{7}{10} \right)^n \leq 0,01, \ln \left(\left(\frac{7}{10} \right)^n \right) \leq \ln(0,01) \) car la fonction \(\ln \) est croissante.

\(n \ln \left(\frac{7}{10} \right) \leq \ln(0,01), n \geq \frac{\ln(0,01)}{\ln(\frac{7}{10})} \) car \(\ln(\frac{7}{10}) < 0. n \geq 12,9, i.e. n \geq 13. \)

2. a. Les gains algébriques possibles sont -5, 15, et 35.

<table>
<thead>
<tr>
<th>(Y = y_i)</th>
<th>(-5)</th>
<th>(15)</th>
<th>(35)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p(Y = y_i))</td>
<td>(\binom{90}{2}) (\frac{89}{110})</td>
<td>(\binom{90}{1} \binom{10}{1}) (\frac{2}{11})</td>
<td>(\binom{10}{2}) (\frac{1}{110})</td>
</tr>
</tbody>
</table>

b. L’espérance est donc \(E(Y) = \sum_i y_i p(Y = y_i) = -5 \times \frac{89}{110} + 15 \times \frac{2}{11} + 35 \times \frac{1}{110} = -1. \)

Le jeu est en défaveur du joueur car l’espérance est négative ou encore qu’en moyenne, sur un grand nombre de partie, le joueur perd 1 euro par partie.
Exercice 2

Partie A. Restitution organisée des connaissances

On pose \(x = e^t \), on a donc \(x > 0 \), \(\ln(x) = t \). On a \(\lim_{t \to -\infty} e^t = +\infty = \lim_{x \to +\infty} \frac{\ln(x)}{x} = \lim_{t \to -\infty} \frac{\ln(e^t)}{e^t} = \lim_{t \to +\infty} \frac{t}{e^t} = 0 \) puisque \(\lim_{t \to +\infty} e^t = +\infty \).

Partie B.

1. La fonction \(g \) est dérivable d’après les théorèmes généraux et \(g'(x) = 2x + \frac{1}{x} \).

 Pour \(x \geq 1, 2x > 0 \) et \(\frac{1}{x} > 0 \), donc \(g'(x) > 0 \) donc la fonction \(g \) est strictement croissante sur \([1 ; +\infty[\).

2. a. La fonction \(f(x) = u(x) - \frac{v(x)}{u(x)} \) avec \(u(x) = x \) et \(v(x) = \ln(x) \). \(u \) et \(v \) sont dérivasbles avec \(u'(x) = 1 \) et \(v'(x) = \frac{1}{x} \). D’après les théorèmes généraux \(f \) est dérivable et on a \(f'(x) = \frac{u'(x)v(x) - v'(x)u(x)}{u(x)^2} = 1 - \frac{1}{x} - \frac{\ln(x)}{x^2} = \frac{x^2 - 1 + \ln(x)}{x^2} \).

 b. Pour tout \(x \in [1 ; +\infty[\), \(g(x) > 0 \) et \(x^2 > 0 \), donc \(f'(x) > 0 \). On en déduit que \(f \) est strictement croissante sur \([1 ; +\infty[\).

 c. \(f(x) - x = -\frac{\ln(x)}{x} \). \(\lim_{x \to +\infty} f(x) - x = -\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0 \) donc la droite \(\mathcal{D} \) d’équation \(y = x \) est une asymptote à la courbe \(\mathcal{C} \).

 d. Pour tout \(x \in [1 ; +\infty[\), \(\ln(x) \geq 0 \) et \(x > 0 \), donc \(\frac{\ln(x)}{x} \geq 0 \) donc la courbe \(\mathcal{C} \) est située en dessous de la droite \(\mathcal{D} \).

3. a. Un graphique pour comprendre :

\[
\text{La distance } M_k N_k = |f(x) - x| = \frac{\ln(k)}{k} > 0.
\]
Exercice 3

5 points

Partie A.

1. Pour tout \(x \in [0 ; 1] \), \(\frac{1}{1 + x^2} > 0 \), donc \(f'(x) > 0 \). On en déduit que \(f \) est strictement croissante sur \([0 ; 1]\).

2. a. \(g \) est la composée des fonctions \(f \) et \(u : x \mapsto \tan(x) \) qui sont dérивables, donc \(g \) est dérivable et \(g'(x) = f'(u(x)) \times u'(x) = \frac{1}{1 + \tan^2(x)} \times (1 + \tan^2(x)) = 1 \)

 b. Pour tout \(x \) de \([0 ; \frac{\pi}{4}]\), \(g'(x) = 1 \), donc pour tout \(x \) de \([0 ; \frac{\pi}{4}]\), \(g(x) = x + c \) avec \(c \in \mathbb{R} \) une constante. D’autre part, \(0 + c = g(0) = f(\tan(0)) = f(0) = 0 \). On en déduit que \(c = 0 \). On a donc \(g(x) = x \) pour tout \(x \) de \([0 ; \frac{\pi}{4}]\), donc \(g \) est dérivable et \(g'(x) = 1 \).

3. \(f \) est croissante sur \([0 ; 1]\). \(f(0) = 0 \) et \(f(1) = \frac{\pi}{4} \) donc, pour tout \(x \in [0 ; 1] \), \(0 \leq f(x) \leq \frac{\pi}{4} \).

Partie B.

1. On pose \(u(x) = x \). \(u \) et \(f \) sont dérivables et leurs dérivées \(u'(x) = 1 \) et \(f'(x) = \frac{1}{1 + x^2} \) sont continues, d’après le théorème de l’intégration par parties on a \(I_0 = \int_0^1 f(x) \, dx = \int_0^1 u'(x) f(x) \, dx = \left[u(x)f(x) \right]_0^1 - \int_0^1 u(x)f'(x) \, dx = \left[x f(x) \right]_0^1 - \int_0^1 \frac{x}{1 + x^2} \, dx = f(1) - \frac{1}{2} \int_0^1 \frac{2x}{1 + x^2} \, dx \). On pose pour tout \(x \) de \([0 ; 1]\), \(\nu(x) = 1 + x^2 \). \(\nu \) est dérivable avec \(\nu'(x) = 2x \), de plus \(\nu(x) > 0 \) pour tout \(x \) de \([0 ; 1]\), donc \(\int_0^1 \frac{2x}{1 + x^2} \, dx = \int_0^1 \frac{\nu'(x)}{\nu(x)} \, dx = [\ln(\nu(x))]_0^1 = \ln(2) \). On en déduit que \(I_0 = \frac{\pi}{4} - \frac{1}{2} \ln(2) \).

2. a. Pour tout \(x \) de \([0 ; 1]\), \(0 \leq x^n \) et \(0 \leq f(x) \), donc \(0 \leq x^n f(x) \) d’après la positivité de l’intégrale, on a \(0 \leq \int_0^1 x^n f(x) \, dx \), donc \(0 \leq I_n \).

b. Pour tout \(x \) de \([0 ; 1]\), \(0 \leq x^n \) et \(f(x) \leq \frac{\pi}{4} \), donc \(x^n f(x) \leq \frac{\pi}{4} x^n \) d’après la croissance de l’intégrale, on a \(\int_0^1 x^n f(x) \, dx \leq \int_0^1 \frac{\pi}{4} x^n \, dx = \left[\frac{\pi}{4} \times \frac{x^{n+1}}{n+1} \right]_0^1 = \frac{\pi}{4(n+1)} \), donc

\[I_n \leq \frac{\pi}{4(n+1)} \]
Exercice 4

5 points

Pour les candidats n'ayant pas suivi l'enseignement de spécialité

1. \(f(M) = M \iff z = z^2 \iff z^2 - z = 0 \iff z(z - 1) = 0 \iff z = 0 \text{ ou } z = 1 \). On en déduit que \(\Gamma_1 = \{O, \Omega\} \).

2. a. \(a = \sqrt{2} - iv\sqrt{2} = 2 \left(\frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2} \right) = 2 \left(\cos \left(-\frac{\pi}{4} \right) + i \sin \left(-\frac{\pi}{4} \right) \right) = 2e^{-i\frac{\pi}{4}} \).

b. Soit \(M \) tel que \(f(M) = A \iff z^2 = a \iff z^2 - 2e^{-i\frac{\pi}{4}} = 0 \iff z^2 - \left(\sqrt{2}e^{-i\frac{\pi}{4}} \right)^2 = 0 \iff \left(z - \sqrt{2}e^{-i\frac{\pi}{4}} \right) \left(z + \sqrt{2}e^{-i\frac{\pi}{4}} \right) = 0 \iff z = \sqrt{2}e^{-i\frac{\pi}{4}} \text{ ou } z = -\sqrt{2}e^{-i\frac{\pi}{4}} \).

Les affixes des deux antécédents de \(A \) par \(f \) sont \(\sqrt{2}e^{-i\frac{\pi}{4}} \) et \(-\sqrt{2}e^{-i\frac{\pi}{4}} \).

3. On pose \(z = x + iy \) l'écriture algébrique de \(z \). On a \(z' = x^2 - y^2 + 2ixy \) est imaginaire pur si et seulement si \(x^2 - y^2 = 0 \iff (x - y)(x + y) = 0 \iff x - y = 0 \text{ ou } x + y = 0 \iff x = y \text{ ou } x = -y \).

\(\Gamma_2 \) est donc la réunion des droites d'équations \(x = y \) et \(x = -y \).

4. a. \(M \) distinct de \(\Omega \) est tel que le triangle \(\Omega MM' \) est rectangle isocèle direct en \(\Omega \) si et seulement si \(z \neq 1 \) et \(M' \) est l'image de \(M \) par la rotation de centre \(\Omega \) et d'angle \(\frac{\pi}{2} \iff z' - 1 = e^{i\frac{\pi}{4}}(z - 1) \iff z^2 - 1 = i(z - 1) \iff z^2 - iz - 1 + i = 0 \) avec \(z \neq 1 \).

b. \((z - 1)(z + 1 - i) = z^2 + z - iz - z - 1 + i = z^2 - iz - 1 + i \)

c. \(z^2 - iz - 1 + i = 0 \iff (z - 1)(z + 1 - i) = 0 \iff z - 1 = 0 \text{ ou } z + 1 - i = 0 \iff z = 1 \text{ ou } z = -1 + i \). Or \(z \neq 1 \), donc \(\Gamma_3 \) contient uniquement le point d'affixe \(-1 + i \).

5. a. \(\overrightarrow{OM} \), \(\overrightarrow{OM'} \) = arg \(\left(\frac{z'}{z} \right) \) = arg \(\left(\frac{z^2}{z} \right) \) = arg \(z \).

b. Les points \(O, M \) et \(M' \) sont alignés si et seulement si \(\arg(\overrightarrow{OM}, \overrightarrow{OM'}) = 0[\pi] \iff \arg(z) = 0[\pi] \iff z \in \mathbb{R} \). \(\Gamma_4 \) est donc l'axe des abscisses privé des points \(O \) et \(\Omega \).

Exercice 4 Spécialité

5 points

Partie A.

1. Recherche de points invariants :

\(M \) est un point invariant \(\iff z = 5iz + 6i + 4 \iff z - 5iz = 6i + 4 \iff z(1 - 5i) = 6i + 4 \iff z = \frac{6i + 4}{1 - 5i} = -1 + i \). L'unique point invariant par \(S \) est le point \(\Omega \) d'affixe \(\omega = -1 + i \).

\(z' - \omega = z' - (-1 + i) = 5iz + 6i + 4 - (-1 + i) \iff z' - (-1 + i) = 5iz + 5 + 5i = 5i(z' - (-1 + i)) \iff 5e^{i\frac{\pi}{2}}(z - \omega) \iff z' - \omega = 5e^{i\frac{\pi}{2}}(z - \omega) \). C'est l'expression complexe de la similitude de centre \(\Omega \), de rapport 5 et d'angle \(\frac{\pi}{2} \).
2. $z' = x' + iy' = 5iz + 6i + 4 = 5i(x + iy) + 6i + 4 = 5ix - 5y + 6i + 4 = -5y + 4 + i(5x + 6) \iff$

\[
\begin{cases}
x' = -5y + 4 \\
y' = 5x + 6
\end{cases}
\]

PARTIE B.

1. a. On a $4 \times 1 + 3 \times (-1) = 1$, en multipliant par 5, on obtient $4 \times 5 + 3 \times (-5) = 5$. On a ainsi une solution particulière $(5; -5)$. D'où $4a + 3b = 5 \iff 4a + 3b = 4 \times 5 + 3 \times (-5) \iff 4a - 4 \times 5 = -3b + 3 \times (-5) \iff 4(a - 5) = -3(b + 5)$. On en déduit que 4 divise $-3(b + 5)$, or 4 et -3 sont premiers entre eux, d'après le théorème de Gauss, 4 divise $b + 5$, donc $\exists k \in \mathbb{Z}$ tel que $b + 5 = 4k \iff b = -5 + 4k$, on en déduit que $4(a - 5) = -3(-5 + 4k + 5) \iff 4(a - 5) = -3 \times 4k \iff a - 5 = -3k \iff a = 5 - 3k$. L'ensemble des couples solutions est donc $(5 - 3k; -5 + 4k)/k \in \mathbb{Z}$.

b. $-3x' + 4y' = 37 \iff -3x' + 4y' = -3(-5y + 4) + 4(5x + 6) = 37 \iff$

$20x + 15y - 12 + 24 = 37 \iff 20x + 15y = 25 \iff 4x + 3y = 5 \iff \exists k \in \mathbb{Z}$ tel que $\begin{cases} x = 5 - 3k \\ y = -5 + 4k \end{cases}$

$-3 \leq -3k \leq 5$ et $-3 \leq -5 + 4k \leq 5$, donc seuls $k = 1$ et $k = 2$ sont tels que $-3 \leq x \leq 5$ et $-3 \leq y \leq 5$. Les points de coordonnées $(2; -1)$ et $(-1; 3)$ répondent à la question.

2. a. $x' + y' = -5y + 4 + 5x + 6 = 5(x - y + 2)$, donc $x' + y'$ est un multiple de 5.

b. $x' + y' - (x' - y') = 2y'$, donc $x' - y'$ et $x' + y'$ sont congrus modulo 2.

Par ailleurs 2 est un nombre premier. Si 2 divise $x'^2 - y'^2 = (x' - y')(x' + y')$, alors il divise $x' - y'$ ou $x' + y'$. Supposons qu'il divise $x' - y'$, alors $x' - y' \equiv 0 [2]$, ou $x' - y' \equiv x' + y' [2]$, donc $x' + y' \equiv x' - y' \equiv 0 [2]$. Le raisonnement est identique si on suppose que $x' + y' \equiv 0 [2].$

c. $x'^2 - y'^2 = 20$ donc $x'^2 - y'^2$ est multiple de 2 donc $x' - y'$ et $x' + y'$ le sont également. Par ailleurs $x' + y'$ est un multiple de 5. Or $(x' - y')(x' + y') = 20$, donc $x' + y'$ est un multiple de 2 et de 5 qui divise 20. $x' + y'$ est donc un multiple de 10 qui divise 20. On en déduit que $x' + y' = \pm 10$ ou $x' + y' = \pm 20$. $x' + y' = \pm 20$ est impossible car cela donnerait $x' - y' = \pm 1$ qui ne serait pas congru à $x' + y' = \pm 20$ modulo 2.

Il reste donc l'unique possibilité $x' + y' = \pm 10$ donc $x' - y' = \pm 2$, ce qui donne $x' = \pm 6$ et $y' = \pm 4$. $x' = 6$ n'est pas possible car cela donnerait $6 = -5y + 4$ d'où $y = -\frac{2}{5}$, donc y n'est pas entier. On a finalement $x' = -6$ et $y' = -4$ ce qui donne $x = -2$ et $y = 2$. L'unique point de \mathcal{E} est donc $(2; -2).$