∽ Corrigé du baccalauréat S Métropole Juin 2010 ∾

EXERCICE 1 Bernard Froget & Sébastien Signist

Partie A:

1. La fonction u est dérivable sur \mathbb{R} , comme produit des fonctions $x \mapsto x$ et $x \mapsto e^{-x}$, chacune dérivable sur \mathbb{R} .

Soit
$$x \in \mathbb{R}$$
. Comme $u'(x) = e^{-x} - xe^{-x}$, on en déduit : $u'(x) + u(x) = e^{-x} - xe^{-x} + xe^{-x} = e^{-x}$:

u est donc est une solution de l'équation différentielle (E)

2. On sait d'après le cours que les solutions (sur \mathbb{R}) de l'équation différentielle y' + ay = 0 sont les fonctions h_K définies sur \mathbb{R} par $h_K(x) = Ke^{-ax}$, avec $K \in \mathbb{R}$. On en déduit :

Les solutions de l'équation (E') sont les fonctions h_K définies sur \mathbb{R} par $h_K(x) = Ke^{-x}$, où $K \in \mathbb{R}$

3. v est une solution de l'équation différentielle (E) $\iff \forall x \in \mathbb{R} \quad v'(x) + v(x) = \mathrm{e}^{-x}$ $\iff \forall x \in \mathbb{R} \quad v'(x) + v(x) = u'(x) + u(x) *$ $\iff \forall x \in \mathbb{R} \quad v'(x) - u'(x) + v(x) - v'(x) = 0$ $\iff \forall x \in \mathbb{R} \quad (v - u)'(x) + (v - u)(x) = 0$ $\iff v - u$ est une solution de l'équation différentielle (E')

4. Raisonnons encore par équivalence :

v est une solution de l'équation différentielle (E) v - u est une solution de d'après Q.3. l'équation différentielle (E') v ll existe un réel v tout réel v : v ll existe un réel v tout réel v : v ll existe un réel v tout reel v reel v tout reel v tout reel v tout reel v tout reel v reel v tout reel v reel v reel v reel v reel v reel

 $\Rightarrow Il existe un réel K tel que, pour tout réel x : <math>v(x) = Ke^{-x} + u(x)$

Par suite:

Les solutions de l'équation (*E*) sont les fonctions v_K définies sur \mathbb{R} par $v_K(x) = Ke^{-x} + xe^{-x} = (x+K)e^{-x}$, où $K \in \mathbb{R}$

5. Soit g une solution de (E): d'après Q.4, il existe un réel K tel que : $\forall x \in \mathbb{R}$ $g(x) = (K+x)e^{-x}$.

Comme: $g(0) = 2 \Leftrightarrow Ke^0 = 2 \Leftrightarrow K = 2$, on en déduit:

L'unique solution g de l'équation (E) vérifiant g(0) = 2 est la fonction g définie sur \mathbb{R} par : $g(x) = (x+2)e^{-x}$.

Partie B:

^{*} car u est une solution de l'équation $y' + y = e^{-x}$

1. La fonction f_k est dérivable sur \mathbb{R} (par exemple en tant que solution, sur \mathbb{R} , de l'équation (E)).

On a alors: $\forall x \in \mathbb{R}$ $f'_k(x) = e^{-x} - f_k(x) = e^{-x} - e^{-x}(x+k) = e^{-x}(1-x-k)$.

Puisque $e^X > 0$ pour tout réel X, le signe de $f'_k(x)$ est celui de 1 - x - k.

Comme $1-x-k \le 0 \Leftrightarrow x \ge 1-k$, f_k est croissante sur $]-\infty$; 1-k] et décroissante sur [1-k]; $+\infty[$:

La fonction f_k admet donc un maximum pour x = 1 - k.

2. M_k a pour coordonnées $(1-k, f_k(1-k))$, soit $(1-k, e^{-(1-k)})$. Puisque $y_{M_k} = e^{-x_{M_k}}$, on a prouvé:

Le point de la courbe \mathcal{C}_k d'abscisse 1 - k appartient à la courbe Γ d'équation $y = e^{-x}$.

- **3. a.** La fonction $H: x \mapsto e^{-x}$ est strictement décroissante sur \mathbb{R} , ce qui permet d'identifier immédiatement les deux courbes.
 - **b.** H(0) = 1: L'unité sur l'axe des ordonnées est égale à 2 cm, soit la distance entre deux graduations successives.
 - $f_k(0) = k$: comme le point de \mathcal{C}_k d'abscisse 0 a pour ordonnée 2, on en déduit : k = 2
 - La résolution de l'équation $f_k(x) = 0$ montre que la courbe \mathcal{C}_k coupe l'axe des abscisses au point d'abscisse

$$-k = -2 \iff k = 2$$
:

L'unité sur l'axe des abscisses est aussi égale à 2 cm, soit la distance entre deux graduations successives.

4. • $\int_0^2 (x+2)e^{-x} dx$ est de la forme $\int_0^2 u'(x)v(x) dx$, où u et v sont les fonctions définies $\sup \mathbb{R} \operatorname{par} \left\{ \begin{array}{l} u(x) = -e^{-x} \\ \operatorname{et} \\ v(x) = x+2 \end{array} \right.$

Les théorèmes généraux permettent d'affirmer que les fonctions u et v sont dérivables sur $\mathbb R$ et que leurs dérivées sont continues sur $\mathbb R$: le théorème d'intégration par parties peut alors être appliqué :

$$\int_0^2 (x+2)e^{-x} dx = \int_0^2 u'(x) \times v(x) dx = [u(x) \times v(x)]_0^2 - \int_0^2 u(x) \times v'(x) dx$$

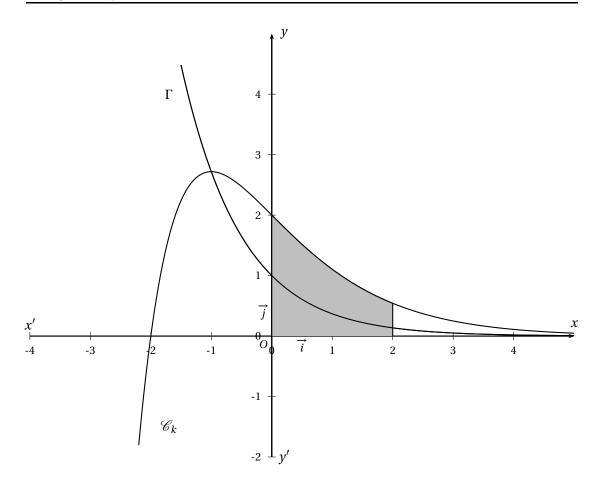
$$= [-(x+2)e^{-x}]_0^2 - \int_0^2 -e^{-x} dx = (-4e^{-2}) + (2) - [e^{-x}]_0^2$$

$$= (-4e^{-2}) + (2) - (e^{-2}) + 1 = 3 - 5e^{-2}$$

$$\int_0^2 (x+2)e^{-x} dx = 3 - 5e^{-2}$$

• La fonction f_2 est continue et positive sur [0,2]. Par suite :

 $\int_0^2 f_2(x)\,\mathrm{d}x$ mesure, en unités d'aire, l'aire de la surface limitée par \mathscr{C}_2 , l'axe des abscisses, et les droites d'équations x=0 et x=2.



EXERCICE 2 J. P. Goualard

1. ROC

Soit (u_n) et (v_v) deux suites adjacentes, avec (u_n) croissante et (v_n) la décroissante. Montrons que ces deux suites adjacentes convergent et ont la même limite.

- v_n est décroissante, donc, pour tout $n \in \mathbb{N}$, $v_n \leq v_0$.
- D'après la propriété 1, pour tout $n, v_n \geqslant u_n$; par conséquent, $u_n \leqslant v_n \leqslant v_0$.
- La suite (u_n) est donc croissante et majorée par v_0 donc convergente vers un réel ℓ. (propriété 2)
- De même, $v_n \geqslant u_n \geqslant u_0$ donc (v_n) est décroissante minorée, donc convergente vers un réel ℓ' .
- D'après la définition, $\lim_{n \to +\infty} (v_n u_n) = 0$; or, $\lim_{n \to +\infty} (v_n u_n) = \ell' \ell$. Par **unicité de la limite**, on a : $\ell' \ell = 0$ donc $\ell = \ell'$.

Conclusion : les deux suites convergent, vers le même réel.

2. a. $10^{-n} = \left(\frac{1}{10}\right)^n$ est une suite géométrique de raison comprise strictement entre -1et 1 et donc $\lim_{n\to+\infty} 10^{-n} = 0$

Ainsi
$$\lim_{n\to+\infty} u_n = \lim_{n\to+\infty} v_n = 1$$
.

Pour tout $n \in \mathbb{N}$, $v_{n+1} - v_n = 1 + \frac{1}{10^{n+1}} - \left(1 + \frac{1}{10^n}\right) = \frac{1}{10^{n+1}} - \frac{1}{10^n} < 0 \text{ donc } (v_n)$ est décroissante. De même, (u_n) est croissante.

De plus:
$$\lim_{n \to +\infty} (v_n - u_n) = \lim_{n \to +\infty} (1 - 10^{-n}) - (1 + 10^{-n}) = \lim_{n \to +\infty} -2 \times 10^{-n} = 0.$$

Les suites (u_n) et (v_n) sont adjacentes.

b. $\lim_{n \to +\infty} \ln(n+1) = +\infty$ et $\lim_{n \to +\infty} \frac{1}{n} = 0$ ainsi $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = +\infty$. Elles ne sont donc **pas adjacentes** (sinon, la limite commune serait réelle)

c. $\lim_{n \to +\infty} \frac{1}{n} = \lim_{n \to +\infty} \left(\frac{-1}{n}\right) = 0$ et donc $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = 1$.

La suite (v_n) n'est pas monotone car $v_1 = 0$, $v_2 = \frac{3}{2} > 1$ et $v_3 = \frac{2}{3} < 1$ donc elles

- ne sont pas adjacentes.
- 3. La suite $\left(\frac{1}{n}\right)$ est décroissante, donc $\left(-\frac{1}{n}\right)$ est croissante, donc $\left(1-\frac{1}{n}\right)$ est croissante. La suite $\left(a+\frac{1}{n}\right)$ est décroissante, donc $\ln\left(a+\frac{1}{n}\right)$ est décroissante (car ln est une

Pour que les suites $((u_n)$ et (v_n) soient adjacentes, il faut que $\lim_{n \to +\infty} (v_n - u_n) = 0$ c'est-

$$\lim_{n \to +\infty} \left(\ln \left(a + \frac{1}{n} \right) - \left(1 - \frac{1}{n} \right) \right) = 0$$

$$\Leftrightarrow \ln a - 1 = 0$$

- $\Leftrightarrow \ln a = 1$
- $\Leftrightarrow a = e$ Les deux suites sont adjacentes pour a = e

EXERCICE 3 François Krieg

Bien que ce ne soit pas demandé dans le sujet, les démonstrations sont données ici.

1. Trois boules sont tirées simultanément, il y a donc $\begin{pmatrix} 10 \\ 3 \end{pmatrix}$ tirages possibles. Il y a $\begin{pmatrix} 7 \\ 2 \end{pmatrix}$ façons de choisir 2 boules blanches parmi les 7 présentes dans l'urne et $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$ façons de choisir une boule noire parmi les trois présentes, donc $\binom{7}{2} \times \binom{3}{1}$ tirages réalisant l'évènement.

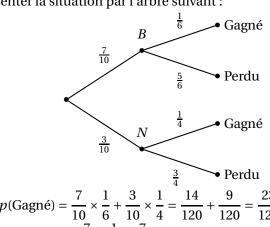
Puisque les boules sont indiscernables au toucher, on est dans une situation d'équiprobabilité, et donc la probabilité de l'évènement est : $\frac{\binom{7}{2} \times \binom{3}{1}}{\binom{10}{3}} = \frac{\frac{7!}{2! \times 5!} \times \frac{3!}{1! \times 2!}}{\frac{10!}{3! \times 7!}} =$

$$\frac{\frac{7\times6}{2}\times3}{\frac{10\times9\times8}{3\times2}} = \frac{21}{40}.$$
La réponse est $\frac{21}{40}$.

2. La situation est celle d'un schéma de Bernoulli (on peut associer le blanc au succès et le noir à l'échec), de paramètres 5 (on fait 5 tirages successifs) et $\frac{7}{10}$ (probabilité du succès, puisque 7 boules parmi les 10 sont blanches) et donc on cherche à calculer p(X = 2), pour avoir deux succès sur 5 tirages, c'est-à-dire deux boules blanches et trois noires.

Le cours donne une réponse $\binom{5}{2} \times \left(\frac{7}{10}\right)^2 \times \left(1 - \frac{7}{10}\right)^{5-2} = \binom{5}{2} \times \left(\frac{7}{10}\right)^2 \times \left(\frac{3}{10}\right)^3$.

3. On peut représenter la situation par l'arbre suivant :



On a donc $p(\text{Gagn\'e}) = \frac{7}{10} \times \frac{1}{6} + \frac{3}{10} \times \frac{1}{4} = \frac{14}{120} + \frac{9}{120} = \frac{23}{120}.$ De plus $p(\text{Gagn\'e} \cap B) = \frac{7}{10} \times \frac{1}{6} = \frac{7}{60}$ Donc $p_{\text{Gagn\'e}}(B) = \frac{\frac{7}{60}}{\frac{23}{120}} = \frac{14}{23}.$

Donc
$$p_{\text{Gagn\'e}}(B) = \frac{\frac{7}{60}}{\frac{23}{120}} = \frac{14}{23}.$$

4. On applique le cours : $p(1 \le X \le 3) = \int_1^3 \lambda e^{-\lambda x} dx = \left[-e^{-\lambda x} \right]_1^3 = -e^{-3\lambda} + e^{-\lambda} = e^{-\lambda} - e^{-3\lambda}$.

EXERCICE 4 Michel Fréchet

Candidats n'ayant pas suivi l'enseignement de spécialité

Dans le plan complexe muni d'un repère orthonormal direct $(O; \vec{u}; \vec{v})$, on considère le point A d'affixe 2 et le cercle \mathscr{C} de centre O passant par A.

 $\alpha = 1 + i\sqrt{3}$ et $\overline{\alpha}$ son conjugué.

1. a. $\alpha^2 - 4\alpha = 2\overline{\alpha} - 8$:

$$\alpha^{2} - 4\alpha = \left(1 + i\sqrt{3}\right)^{2} - 4\left(1 + i\sqrt{3}\right) = \left(1 + i\sqrt{3}\right)\left(1 + i\sqrt{3} - 4\right) = \left(1 + i\sqrt{3}\right)\left(-3 + i\sqrt{3}\right) = -6 - 2i\sqrt{3}$$
$$2\overline{\alpha} - 8 = 2\overline{\left(1 + i\sqrt{3}\right)} - 8 = 2 - 2i\sqrt{3} - 8 = -6 - 2i\sqrt{3}$$

b. Le cercle \mathscr{C} a pour rayon OA = 2 et

$$OB^2 = OC^2 = \alpha \overline{\alpha} = (1 + i\sqrt{3})(1 - i\sqrt{3}) = 4 = 2^2 \Longrightarrow B \in \mathscr{C} \text{ et } C \in \mathscr{C}$$

- **2.** Soit *D* un point du cercle \mathscr{C} d'affixe $2e^{i\theta}$, où $\theta \in]-\pi;\pi[$.
 - a. Voir figure plus loin.
 - **b.** L'écriture complexe de la rotation de centre O et d'angle $\frac{\pi}{3}$ est : $z' 0 = e^{i\frac{\pi}{3}}(z 0)$.

$$z_E = e^{i\frac{\pi}{3}} \times 2e^{i\theta} = 2e^{i\frac{\pi}{3}} \times e^{i\theta} = 2\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)e^{i\theta} = \left(1 + i\sqrt{3}\right)e^{i\theta} = \alpha e^{i\theta}$$

3. F milieu de [BD]; G milieu de [CE]:

a.
$$z_F = \frac{z_B + z_D}{2} = \frac{\alpha + 2e^{i\theta}}{2} = \frac{\alpha}{2} + e^{i\theta}$$
; $z_G = \frac{\alpha e^{i\theta} + \overline{\alpha}}{2}$

b. AFG équilatéral :

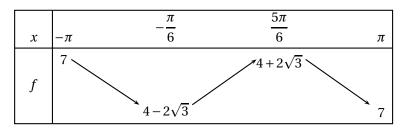
$$\frac{z_G - 2}{z_F - 2} = \frac{\alpha e^{i\theta} + \overline{\alpha} - 4}{\alpha + 2e^{i\theta} - 4} = \frac{\alpha \left(\alpha e^{i\theta} + \overline{\alpha} - 4\right)}{2\alpha e^{i\theta} + \alpha^2 - 4\alpha}$$
$$= \frac{\alpha \left(\alpha e^{i\theta} + \overline{\alpha} - 4\right)}{2\alpha e^{i\theta} + 2\overline{\alpha} - 8} = \frac{\alpha \left(\alpha e^{i\theta} + \overline{\alpha} - 4\right)}{2\left(\alpha e^{i\theta} + \overline{\alpha} - 4\right)} = \frac{\alpha}{2}$$
$$= \frac{1}{2} + i\frac{\sqrt{3}}{2} = e^{i\frac{\pi}{3}}$$

Ainsi:

$$\left|\frac{z_G - 2}{z_F - 2}\right| = \frac{AG}{AF} = 1 \iff AG = AF \text{ et } Arg\left(\frac{z_G - 2}{z_F - 2}\right) = \left(\overrightarrow{AF}; \overrightarrow{AG}\right) = \frac{\pi}{3}$$

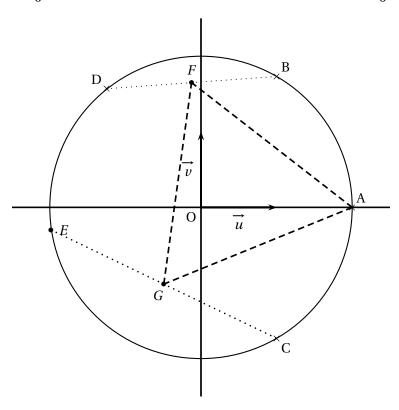
Nous sommes donc en présence d'un triangle isocèle dont l'angle au sommet mesure $\frac{\pi}{3}$. C'est un triangle équilatéral.

4. $AF^2 = 4 - 3\cos\theta + \sqrt{3}\sin\theta$. $f: x \to 4 - 3\cos\theta + \sqrt{3}\sin\theta$ sur $[-\pi; \pi]$. Tableau de variations de f:



Le minimum de cette fonction f est atteint pour $\theta = -\frac{\pi}{6}$. En effet, le point D dépend de $\theta \in]-\pi;\pi]$.

La fonction f admet un minimum sur cet intervalle. Donc AF^2 admet un minimum en $-\frac{\pi}{6}$. Du fait que AF est positif, AF est aussi minimum en $-\frac{\pi}{6}$.



EXERCICE 4

Candidats ayant suivi l'enseignement de spécialité

- 1. **a.** On a $z_{T(A)} = -\overline{z_A} + 2 = -1 + 2 = 1 = z_A$: T(A) = AOn a $z_{T(\Omega)} = -\overline{z_\Omega} + 2 = -(1 - i\sqrt{3}) + 2 = 1 + i\sqrt{3} = z_\Omega$: $T(\Omega) = \Omega$
 - **b.** T est une similitude distincte de l'identité et ayant (au moins) deux points fixes : **T est donc la réflexion d'axe** ($A\Omega$).

 \mathbf{c} . L'image d'un cercle de centre O et de rayon R par une similitude s est un cercle de centre s(O) et de rayon $k \times R$, où k est le rapport de la similitude. Une réflexion étant une isométrie, on a ici k = 1. Comme T(O) a pour affixe 2, alors :

L'image de \mathscr{C} par T est le cercle de centre $T(\mathbf{0}) = \mathbf{0}'$ et de rayon 1.

2. a. Voir ci-dessous : A' est le point de \mathscr{C}' d'abscisse 2.5

L'image de
$$\mathscr C$$
 par T est le cercle de centre $T(O) = O'$ et de rayon 1.

a. Voir ci-dessous : A' est le point de $\mathscr C'$ d'abscisse 2.5

b. On a
$$\begin{cases} Arg\left(\frac{z'-2}{z}\right) = Arg\left(\frac{z_{M'}-z_{O'}}{z_M-z_O}\right) = (\overrightarrow{OM},\overrightarrow{O'M'}) = \frac{\pi}{3}[2\pi] \\ \text{et} \\ \left|\frac{z'-2}{z}\right| = \frac{|z'-2|}{|z|} = \frac{O'M'}{OM} = 1 \text{ car } OM = O'M' = 1 \end{cases}$$

$$e^{i\frac{\pi}{3}}, \text{ soit :}$$

$$z'-2 = e^{\frac{\pi}{3}}z$$

c. L'écriture complexe de r est de la forme z' = az + b, avec $\begin{cases} |a| = 1 \\ \text{et} & : r \text{ est donc} \\ a \neq 1 \end{cases}$ une rotation d'angle $Arg(a) = \frac{\pi}{3}$.

Le centre de r est l'unique point invariant de r (car $r \neq Id_{\mathscr{P}}$): son affixe est donc la solution de l'équation $z = e^{i\frac{\pi}{3}}z + 2$, soit $z = \frac{2}{1 - e^{i\frac{\pi}{3}}} = \frac{2}{\frac{1}{2} - i\frac{\sqrt{3}}{2}} = \frac{2(\frac{1}{2} + i\frac{\sqrt{3}}{2})}{1} = \frac{2}{1 - e^{i\frac{\pi}{3}}} = \frac{2}{1 - e^{i\frac{3$ z_{Ω} : r est la rotation de centre Ω et d'angle $\frac{\pi}{3}$

3. L'affixe z_1 du point M_1 est $\frac{z+z'}{2} = \frac{z+e^{i\frac{\pi}{3}}z+2}{2} = \frac{1+e^{i\frac{\pi}{3}}}{2}z+1 = \left(\frac{3}{4}+i\frac{\sqrt{3}}{4}\right)z+1 = \frac{\sqrt{3}}{2}e^{i\frac{\pi}{6}}z+1$

On reconnait l'écriture complexe d'une similitude directe S : le lieu géométrique du point M_1 lorsque le point M décrit le cercle $\mathscr C$ est l'image de $\mathscr C$ par S: il s'agit donc du cercle de centre S(O) = A (car A est le milieu de [OO']) et passant par le milieu A_1 de [AA'].

