Durée: 4 heures

EXERCICE 1

Soit $\mathcal{B} = (\overrightarrow{\iota}, \overrightarrow{j})$ une base orthonormée d'un plan vectoriel euclidien \mathcal{P} .

Partie A

1. On pose $\overrightarrow{u} = \overrightarrow{i} + 2\overrightarrow{j}$ et $\overrightarrow{v} = 2\overrightarrow{i} - \overrightarrow{j}$ et on appelle φ l'application linéaire de \mathscr{P} dans \mathscr{P} telle que

$$\begin{cases} \varphi(\overrightarrow{u}) = \frac{1}{2}\overrightarrow{u} \\ \varphi(\overrightarrow{v}) = -\frac{1}{2}\overrightarrow{v} \end{cases}$$

Montrer que $\mathscr{B}' = (\overrightarrow{u}, \overrightarrow{v})$ est une base orthogonale de \mathscr{P} .

En déduire que l'application linéaire φ est entièrement déterminée et écrire sa matrice B dans la base \mathscr{B}' .

- **2.** Montrer que φ est la composée d'une homothétie vectorielle et d'une isométrie vectorielle de \mathscr{P} que l'on précisera.
- **3.** Calculer $B^n = B^{n-1} \times B$, $n \in \mathbb{N}^*$. En déduire la matrice A_n de $\varphi^n = \varphi^{n-1} \circ \varphi$ dans la base \mathscr{B} . Expliciter la matrice A_1 que l'on notera A.

Partie B

Soit $\mathscr{R}=(O,\mathscr{B})$ un repère orthonormé d'un plan affine euclidien P associé à \mathscr{P} . On appelle f l'application affine de P associée à l'application linéaire φ et telle que O'=f(O) ait pour coordonnées $(1\,;2)$ dans \mathscr{R} .

1. Montrer que les coordonnées (x'; y') du point M' = f(M) s'expriment en fonction des coordonnées (x; y) du point M par les relations :

$$\begin{cases} x' = \frac{-3x+4y}{10} + 1\\ y' = \frac{4x+3y}{10} + 2 \end{cases}$$

2. Quel est l'ensemble des points invariants par f ? Montrer qu'il existe une homothétie ponctuelle H et une isométrie affine S telles que :

$$f = H \circ S = S \circ H$$
.

Reconnaître la transformation f. Préciser ses éléments caractéristiques et faire une figure indiquant la construction du transformé d'un point par f.

3. Quelle est l'image par f de la droite (D) d'équation

$$3x - 4y + 10 = 0$$
?

Plus généralement, quelle est l'image par f d'une droite d'équation

$$ax + by + c = 0$$
?

Existe-t-il des droites globalement invariantes par f ? Pouvait-on prévoir le résultat ?

Baccalauréat C A. P. M. E. P.

4. Soit Ω le point de coordonnées (2 ; 4) et M le point de coordonnées (x ; y) $(M \neq \Omega)$.

On définit la suite de points :

$$M_0 = M$$
; $M_1 = f(M_0)$; $M_2 = f(M_1)$;...; $M_n = f(M_{n-1})$;...

En utilisant les résultats du B 2., montrer que les points M_n appartiennent, suivant la parité de n, à l'une ou l'autre de deux droites que l'on précisera.

5. Calculer les composantes $(X_n; Y_n)$ du vecteur $\overrightarrow{\Omega M_n}$ dans la base \mathscr{B} , en fonction de x et y.

Quelle est la position limite du point M_n lorsque n augmente indéfiniment?

6. On choisit $(x; y) = \left(\frac{1}{2}; \frac{19}{4}\right)$.

Montrer que, si l'on pose $Z_n = d(\Omega, M_n)$ (Z_n est la distance euclidienne des points Ω et M_n).

 Z_n est le terme général d'une suite géométrique dont on précisera le premier terme et la raison.

Quelle est la plus petite valeur de n telle que $d(\Omega, M_n) < 0.001$?

EXERCICE 2

Soit f la fonction réelle de la variable réelle définie par :

$$f(x) = \operatorname{Log} \frac{x-1}{x+1}$$

- 1. Étudier la fonction f, et tracer sa courbe représentative (C) dans le plan affine euclidien P rapporté à un repère orthonormé $(O, \overrightarrow{\iota}, \overrightarrow{\jmath})$.
- **2.** Montrer que la fonction f est intégrable sur [2; 3]. Calculer l'aire \mathscr{A} du , domaine plan délimité par la courbe C, la droite $\left(0, \overrightarrow{i}\right)$, et les droites d'équations x = 2 et x = 3 (on pourra songer â faire une intégration par parties).
- **3.** On appelle g, la restriction de f à]1; $+\infty$ [. Montrer que g est une bijection de]1; $+\infty$ [sur] $-\infty$; 0[. Déterminer g^{-1} .

EXERCICE 3

On rappelle que l'ensemble S des suites réelles muni de l'addition des suites et de la multiplication par un réel est un espace vectoriel sur \mathbb{R} . On note (u_n) une suite et u_n $(n \in \mathbb{N})$ le terme de rang n de la suite (u_n) .

On considère l'ensemble E des suites (u_n) vérifiant la relation :

$$u_n = 4(u_{n-1} - u_{n-2}), \quad n \in \mathbb{N} - \{0; 1\}.$$

- **1.** Montrer que *E* muni de l'addition et de la multiplication par un réel est un sous-espace vectoriel de *S*.
- **2.** Déterminer r ($r \in \mathbb{R}^*$) pour que la suite géométrique (r^n) soit élément de E. On désignera par a_0, a_1, \ldots, a_n les termes de rang $1, 2, \ldots, n+1$ de la suite (r^n). Montrer que la suite (nr^n) est élément de E. On désignera par b_0, b_1, \ldots, b_n les termes de rang $1, 2, \ldots, n+1$ de cette suite (nr^n).
- **3.** Soit (u_n) un élément quelconque de E. Montrer qu'il existe un couple unique de réels (λ, μ) tel que :

$$u_0 = \lambda a_0 + \mu b_0$$

$$u_1 = \lambda a_1 + \mu b_1.$$

Baccalauréat C A. P. M. E. P.

Montrer que, quel que soit $n, n \in \mathbb{N}$, u_n est de la forme :

$$u_n = \lambda a_n + \mu b_n$$

En déduire une base pour E et l'expression en fonction de u_0,u_1 et n, du terme général u_n d'un élément quelconque (u_n) de E.

Grenoble 3 septembre 1975