→ Baccalauréat mathématiques septembre 1957 Madagascar ∾

I. 1er sujet

x étant un arc exprimé en radians, établir la limite de $\frac{\sin x}{x}$ lorsque x tend vers zéro. Dérivée de $y = \sin x$.

I. 2^e sujet

Dérivée de la racine carrée d'une fonction ayant une dérivée.

I. 3^e sujet

a, b, c, A, B, C étant les côtés et les angles d'un triangle, établir les deux systèmes de relations :

$$\begin{cases} \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \\ A+B+C = \pi \end{cases}$$

et

$$\begin{cases} a^2 = b^2 + c^2 - 2bc \cos A, \\ b^2 = c^2 + a^2 - 2ca \cos B, \\ c^2 = a^2 + b^2 - 2ab \cos C. \end{cases}$$

II.

A et B sont deux points fixes d'un plan et O le milieu du segment AB; la distance AB est donnée et égale à 2a (OA = OB = a).

On considère deux cercles quelconques C et C' du plan passant par A et B. Soient PP' et QQ' leurs tangentes communes, P, P', Q, Q' étant les points de contact.

- 1. Montrer que, pour tous les couples de cercles C, C' pour lesquels les segments de droites PP' et QQ' ont une longueur constante donnée 2ℓ (PP' = QQ' = 2ℓ), les tangentes communes PP' passent par un point fixe p, et les tangentes communes QQ' par un point fixe q. On donnera la distance des points p et q au point O en fonction de a et de ℓ .
- **2.** Le cercle C et la longueur ℓ étant donnés, construire le cercle C'.
- **3.** La construction de **2.** associe, pour une longueur ℓ donnée, à tout cercle C deux cercles C', que l'on désignera par C_1' et C_2' .

Comment doit être choisi le cercle C pour que C'_1 et C'_2 soient égaux?

4. C et ℓ étant donnés, indiquer une construction géométrique aussi simple que possible du centre d'homothétie directe S des deux cercles C_1' et C_2' .

Construire le cercle C, connaissant S et ℓ .