∽ Baccalauréat Montpellier juin 1941 ∾

SÉRIE MATHÉMATIQUES

Ι

1er sujet

Dérivée de $\sin x$.

2e sujet

Résoudre et discuter l'équation

$$5\sin x + 12\cos x = 18k$$
 (k donné).

3e sujet

Résoudre un triangle ABC, connaissant les trois côtés a = 13, b = 14, c = 15 (mètres).

II

PREMIÈRE PARTIE

- 1. Décomposer en produit de deux facteurs le polynôme $X^4 + 4$.
- 2. N désignant un nombre entier, existe-t-il un nombre premier E de la forme $E = N^4 + 4$?
- 3. Les nombres E et E'.

$$E = N^4 + 4$$
, $E' = N'^4 + 4$,

formés avec deux entiers N et N' différant de deux unités (N-N'=2), ne sauraient être premiers entre eux.

4. Déterminer deux entiers dont le plus petit commun multiple soit N^4+4 , N désignant un nombre un nombre impair donné.

DEUXIÈME PARTIE

1. Les côtés *a*, *b* et *c* d'un triangle ABC sont exprimés par les formules suivantes en fonction d'un paramètre positif *x* :

$$a = x^2 + 2$$
, $b = x^2 - 2x + 2$, $c = x^2 + 2x + 2$.

Que doit être *x* pour l'existence du triangle?

2. Exprimer en fonction de x les longueurs du rayon r du cercle inscrit et de la hauteur h issue du sommet Δ

De la comparaison des expressions obtenues, déduire une propriété géométrique du triangle ABC.

Évaluer la longueur de la bissectrice intérieure de l'angle A.

- 3. Calculer le produit cotg $\frac{B}{2}$. cotg $\frac{C}{2}$.
- N. B. Les deux parties du problème peuvent être traitées indépendamment.

Dans la deuxième partie, les réciproques des propriétés établies des triangles étudiés ne sont pas exigées.