Durée: 4 heures

☞ Baccalauréat Montréal et New York juin 1965 ∾

Série mathématiques élémentaires et mathématiques et technique

EXERCICE 1

Chercher tous les ensembles de trois nombres entiers naturels x, y et z tels que

$$\begin{cases} 2x &= y+z, \\ x+y+z &= xyz. \end{cases}$$

On rappelle que l'ensemble $\mathbb N$ des entiers naturels est l'ensemble

$$\mathbb{N} = \{0, 1, 2, ..., n, ...\}.$$

EXERCICE 2

Résoudre l'équation

$$2\left(\sqrt{3}\sin x\cos x - \sin^2 x\right) = \sqrt{2} - 1.$$

On placera sur le cercle trigonométrique les extrémités des arcs solutions.

EXERCICE 3

Les deux nombres réels a et b sont liés par la relation

$$2a + e^{-b} - e^b = 0.$$

Montrer que cette égalité entraine la suivante :

$$b = \operatorname{Log}\left(a + \sqrt{a^2 + 1}\right),\,$$

e désignant la base des logarithmes népériens.

EXERCICE 4

On considère la fonction

$$y_{\lambda} = \frac{\lambda x^2 - 2x + \lambda}{x^2 + 5x + 4}$$

de la variable réelle x; λ est un paramètre réel.

- 1. a. Déterminer λ pour que cette fonction présente un maximum et un minimum.
 - **b.** Déterminer λ pour que cette fonction soit décroissante sur la droite réelle R.
 - **c.** Cette fonction peut-elle être croissante sur \mathbb{R} ?
 - **d.** Existe-t-il une valeur λ_0 du paramètre λ pour laquelle la fonction y_{λ} a un seul maximum ou un seul minimum?
- **2.** Construire la courbe représentative de la fonction y_1 obtenue en donnant au paramètre λ la valeur + 1. Soit (Γ) cette courbe.

3. Étudier l'intersection de la courbe (Γ) avec une parallèle variable à l'axe des abscisses, d'ordonnée k.

Lorsque l'intersection précédente n'est pas vide, elle comprend, en général, deux points, M(k) et M'(k).

Soit A(k) le point dont les coordonnées sont

$$\begin{cases} x = 0 \\ y = k \end{cases}$$

Soit B(k) le conjugué harmonique de A(k) par rapport aux points M(k) et M'(k). Déterminer et construire l'ensemble des points B(k) lorsque k varie.

Montréal et New York 2 juin 1965