Durée: 4 heures

EXERCICE 1

- 1. Trouver l'ensemble des entiers naturels qui divisent 276.
- **2.** Trouver les paires d'entiers naturels dont le plus grand diviseur commun d et le plus petit multiple commun m vérifient

$$\begin{cases} m+3d = 276 \\ 10 < d < 30 \end{cases}$$

EXERCICE 2

Soit E un espace affine euclidien de dimension 3 rapporté au repère orthonormé $(O; \vec{i}, \vec{j}, \vec{k})$. On considère les points A, B et O' ayant pour coordonnées respectivement (a; 0; 0), (0; b; 0), (0; 0; c). Soit C le point tel que $\overrightarrow{AC} = \overrightarrow{OB}$ et soit A', B', C' les points définis par $\overrightarrow{AA'} = \overrightarrow{BB'} = \overrightarrow{CC'} = \overrightarrow{OO'}$. Soit S_1 , S_2 et S_3 les symétries orthogonales ayant pour axes respectivement OA, BB' et A'C'.

- **1.** La transformation $T = S_3 \circ S_2 \circ S_1$ est-elle un déplacement ou un antidéplacement?
- **2.** Quelle est l'application linéaire associée à *T*?
- **3.** Déterminer la nature géométrique de *T*.

PROBLÈME

1. On désigne par G l'espace vectoriel réel des applications polynomiall-, de R dans R, de degré au plus égal à 2. On rappelle que G est de dimension 3. Soit a un nombre réel tel que $a^2 \neq 1$. On considère les trois applications polynomiales R_a , S_a , T_a

Soit a un nombre réel tel que $a^2 \neq 1$. On considère les trois applications polynomiales R_a , S_a , T_a définies de la manière suivante : pour tout $x \in \mathbb{R}$

$$R_a(x) = \frac{(x-1)(x-a)}{2(1+a)}, \quad S_a(x) = \frac{x^2-1}{a^2-1}, \quad T_a(x) = \frac{(x+1)(x-a)}{2(1-a)}$$

a. Calculer les valeurs de R_a , S_a , T_a aux points -1, a, 1 et en déduire que ces trois applications polynomiales sont linéairement indépendantes.

Constituent-elles une base de &?

b. Soit α , β et γ des nombres réels. Montrer qu'il existe un et un seul élément P de $\mathscr E$ tel que

$$P(-1) = \alpha$$
, $P(a) = \beta$, $P(1) = \gamma$

en cherchant à exprimer P à l'aide de R_a , S_a , T_a .

2. a. Soit f l'application de [-1; 1] dans $\mathbb R$ définie par

$$f(x) = \frac{1}{2} \left(\frac{1}{3+x} + \frac{1}{3-x} \right), -1 \leqslant x \leqslant 1$$

Calculer
$$\int_{-1}^{1} f(x) \, \mathrm{d}x$$
.

Le baccalauréat de 1975 A. P. M. E. P.

b. Déterminer l'élément Q_0 de $\mathscr E$ qui prend aux points -1, 0, 1 les mêmes valeurs que f et calculer $Q_0(x)-f(x)$ ainsi que $\int_{-1}^1 Q_0(x)\,\mathrm{d}x$.

c. On pose $\Delta = \int_{-1}^{1} (Q_0(x) - f(x)) dx$.

En minorant et majorant $9 - x^2$ lorsque $|x| \le 1$, montrer que

$$\frac{1}{819} \leqslant \Delta \leqslant \frac{1}{720}.$$

- **d.** En déduire un encadrement de Log 2 par des nombres décimaux dont la différence est $16\cdot 10^{-5}$.
- **3.** On considère à nouveau, lorsque $a^2 \neq 1$, les polynômes R_a , S_a , T_a introduits en 1.
 - a. Calculer les intégrales

$$\int_{-1}^{1} R_a(x) \, \mathrm{d}x, \quad \int_{-1}^{1} S_a(x) \, \mathrm{d}x, \quad \int_{-1}^{1} T_a(x) \, \mathrm{d}x$$

b. On suppose que $(a^2 - 1)(a^2 - 9) \neq 0$. Soit Q_a l'élément de \mathscr{E} qui prend aux points -1, a, 1 les mêmes valeurs que f. Calculer

$$I(a) = \int_{-1}^{1} Q_a(x) \, \mathrm{d}x.$$

(Il est conseillé de vérifier que pour a = 0 on obtient le résultat trouvé en 2. b.

- **c.** Étudier les variations de I(a) lorsque a parcourt l'intervalle] 1 ; 1[.
- **d.** En déduire qu'il existe un nombre a_0 tel que

$$-1 < a_0 < 1$$
 et $I(a_0) = \text{Log } 2$