∘ Baccalauréat C Pondichéry mai 1983 ∾

EXERCICE 1

Calculer l'intégrale,
$$\int_{\frac{\pi}{2}}^{\pi} (4\cos^3 x - 3\cos^2 x) dx$$
.

EXERCICE 2

Une personne compose au hasard un numéro de téléphone à 6 chiffres (un cadran téléphonique comporte les dix chiffres 1, 2, 3, 4, 5, 6, 7, 8, 9, 0).

- 1. Calculer les probabilités des évènements suivants :
 - a. la personne compose le numéro 11 03 50
 - b. la personne compose un numéro de téléphone dont les chiffres sont tous distincts
 - **c.** la personne compose un numéro dont les chiffres constituent une suite strictement croissante (par exemple, le 03 47 89).
- **2.** Soit *X* la variable aléatoire qui prend pour valeur le nombre de chiffres 0 utilisés dans le numéro composé par cette personne.

Déterminer la loi de probabilité de X.

PROBLÈME (PARTIEL)

Partie II.

 (π) est un plan vectoriel euclidien de base orthonormée directe (\vec{t}, \vec{j}) .

F désigne l'ensemble des endomorphismes de (π) dont le noyau contient la droite vectorielle (D) de base $\overrightarrow{i} + \overrightarrow{j}$.

G désigne l'ensemble des endomorphismes de (π) ayant une image incluse dans (D).

- 1. Donner deux exemples démontrant que *F* et *G* ne sont pas vide.
- **2.** Démontrer que, pour tout Φ de F et tout Ψ de G, $\Psi \circ \Phi \in F \cap G$. Identifier $\Phi \circ \Psi$.
- **3.** *s* étant la symétrie vectorielle orthogonale par rapport à la droite vectorielle de base $\overrightarrow{\iota}$ et r la rotation vectorielle d'angle droit direct, calculer $(s+r)(\overrightarrow{\iota})$ et $(s+r)(\overrightarrow{\jmath})$.

En déduire que s + r appartient à $F \cap G$. Déterminer le noyau et l'image de s - r.

4. E est l'ensemble des matrices à coefficients réels de la forme $\begin{pmatrix} a & -a \\ b & -b \end{pmatrix}$;

$$A = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \quad ; \quad B = \begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix}$$

Démontrer que Φ est élément de F si et seulement si sa matrice dans la base $(\overrightarrow{\iota}, \overrightarrow{J})$ appartient à E.

En déduire que F est le plan vectoriel de base (p, q), p et q ayant respectivement pour matrices A et B.

Démontrer que Φ est élément de F si et seulement si sa matrice dans la base $(\overrightarrow{\iota}, \overrightarrow{\jmath})$ appartient à E.

En déduire que F est le plan vectoriel de base (p, q), p et q ayant respectivement pour matrices A et B.

Le baccalauréat de 1983 A. P. M. E. P.

5. Caractériser géométriquement p et -q.

Partie III. P est un plan affine associé à (π) de repère $(O; \overrightarrow{\iota}, \overrightarrow{\jmath})$.

1. Soit f l'application affine de P dans P qui au point M de coordonnées (x; y) associe le point M' de coordonnées (x'; y') telles que

$$\begin{cases} x' = 2x - y \\ y' = x \end{cases}$$

Démontrer que l'endomorphisme φ associé à f est la somme de p et d'une projection vectorielle Ψ appartenant à l'ensemble G de la partie II dont on précisera les éléments.

En remarquant que le point O est invariant par f, donner une construction de M' à partir de M.

Démontrer que f est bijective.

2. Soit h_1 et h_2 les fonctions de \mathbb{R} dans \mathbb{R} définies par

$$h_1(x) = 2x + \sqrt{1 - \frac{x^2}{2}}$$
; $h_2(x) = 2x - \sqrt{1 - \frac{x^2}{2}}$.

On désigne par C_1 et C_2 leurs représentations graphiques respectives.

- **a.** Étudier les variations de h_1 . Tracer C_1 dans le repère $\left(O; \overrightarrow{i}, \overrightarrow{j}\right)$. Démontrer que C_1 et C_2 sont symétriques par rapport au point O. Tracer C_2 .
- **b.** Soit C la réunion de C_1 et C_2 . Démontrer que l'image de C par f est une conique dont on déterminera les éléments. Tracer cette conique.