Durée: 4 heures

☞ Baccalauréat C Sud-Vietnam juin 1969 ∾

EXERCICE 1

Résoudre l'équation

$$\cos^2[\text{Log } x] + \frac{\sqrt{3}}{2}\sin[\text{Log } (x^2)] - \frac{1}{2} = \frac{1}{\sqrt{2}},$$

où Log x désigne le logarithme népérien du nombre réel positif x. (On ne cherchera pas à donner des valeurs approchées des racines.)

EXERCICE 2

Dans un repère orthonormé d'axes x'Ox, y'Oy, z'Oz la position d'un point mobile M est donnée à l'instant t par ses coordonnées :

$$x = \cos(\omega t^2)$$
, $y = \sin(\omega t^2)$, $z = \frac{5}{2} \omega t^2$,

où ω est une constante positive donnée.

- 1. Sur quelle courbe le point mobile *M* se déplace-t-il?
- **2.** Déterminer le vecteur vitesse instantanée à l'instant t. Quelle est la vitesse algébrique, v, du point M sur sa trajectoire orientée dans le sens des t croissants?
- **3.** On rappelle que, si s(t) est l'équation horaire du mouvement, on a $v = \frac{ds}{dt}$. Quelle est l'équation horaire du mouvement, en prenant pour origine, sur la trajectoire, le point M_0 correspondant à la position du point M à l'instant t = 0?

PROBLÈME

Le plan (Π) est rapporté à un repère orthonormé d'axes x'Ox et y'Oy.

Partie A

On considère, dans ce plan, la famille, (C), de cercles (C_{λ}) d'équation

$$x^2 + y^2 - \lambda^2 x - 2\lambda y + 1 = 0$$
,

où le paramètre λ est un nombre réel $(\lambda \in \mathbb{R})$.

1. Quelle est la partie, L, de \mathbb{R} telle qu'à chaque nombre λ de L corresponde un cercle (C_{λ}) ?

Calculer les coordonnées du centre et le rayon de (C_{λ}) .

Quel est, dans (Π), l'ensemble, (Γ), des centres des cercles (C_{λ})?

L'application qui à λ fait correspondre le centre du cercle (C_{λ}) est-elle une bijection de L sur (Γ) ?

- **2.** Montrer que, quel que soit λ , le cercle (C_{λ}) est orthogonal à un certain cercle, (A), dont on précisera le centre et le rayon.
- **3.** À quelle condition les coordonnées (u; v) d'un point m de (Π) doivent-elles satisfaire pour que, par m:
 - **a.** il passe deux cercles de la famille (*C*);
 - **b.** il passe un seul cercle de la famille (*C*)?

Baccalauréat C A. P. M. E. P.

Partie B

Soit f la fonction qui, à tout nombre x de l'intervalle]-1 ; 0], fait correspondre le nombre

$$f(x) = \sqrt{\frac{-x(x^2+1)}{x+1}}.$$

1. Montrer que le signe de la dérivée, f', de f est celui de l'expression

$$-[2x^2(x+1)+x^2+1].$$

Étudier les variations de f. Tracer son graphe, G, dans (Π) rapporté aux axes x'Ox, y'Oy.

Le point O appartient à (G): étudier la tangente à (G) en O.

2. Déduire de (G) la courbe (G') ayant pour équation, par rapport au repère donné,

$$y^{2}(1+x) + x(x^{2}+1) = 0.$$

3. Des résultats des questions précédentes déduire l'ensemble, E, des points du plan (Π) par lesquels il passe deux cercles de la famille (C) et l'ensemble, E', des points par lesquels il ne passe qu'un seul cercle de la famille (C).