501

Matrice de Leslie pour modéliser la dynamique d’une population structurée en classes d’âges

Jacques Bair [1]

Résumé de l’article

Pour remédier aux défauts des modèles habituellement continus, servant à décrire l’évolution temporelle du nombre d’habitants, Leslie a développé un modèle discret où le temps prend des valeurs entières, et il a défini des matrices qui portent son nom, sa motivation étant la prolifération des souris pendant la seconde guerre mondiale.
L’article donne deux exemples de matrices carrées d’ordre 2 et 3 et la généralisation à une matrice carrée d’ordre K+1, servant à décrire la dynamique d’une population animale composée de K+1 classes formées selon les âges.
Leslie a montré la pertinence de son modèle en l’appliquant à des données observées.
L’évolution de la population est fournie, à long terme, par le théorème de Perron-Frobenius.
Ce modèle, adopté par de nombreux biologistes, fournit aux professeurs de mathématiques enseignant le calcul matriciel l’opportunité de montrer la puissance d’application de cette théorie.

Plan de l’article

  • Introduction
  • 1. Exemple d’une matrice carrée d’ordre 2
  • 2. Exemple d’une matrice carrée d’ordre 3
  • 3. Généralisation au cas d’une matrice carrée d’ordre K + 1
  • Bibliographie

Lire l’article dans son intégralité en pdf

Notes

[1Professeur à l’Université de Liège ; adresse électronique : J.Bair@ulg.ac.be

L’APMEP

Brochures & Revues
Ressources

Actualités et Informations

Actualités et Informations avec nos partenaires

Base de ressources bibliographiques

Publimath, base de ressources bibliographiques

 

Les Régionales de l’APMEP

les Régionales de l'APMEP